Departamento de Tecnología Electrónica, Universidad de Málaga, ETSI Telecomunicación, 29071 Málaga, Spain.
J Healthc Eng. 2020 Nov 30;2020:6622285. doi: 10.1155/2020/6622285. eCollection 2020.
Due to the serious impact of falls on the autonomy and health of older people, the investigation of wearable alerting systems for the automatic detection of falls has gained considerable scientific interest in the field of body telemonitoring with wireless sensors. Because of the difficulties of systematically validating these systems in a real application scenario, Fall Detection Systems (FDSs) are typically evaluated by studying their response to datasets containing inertial sensor measurements captured during the execution of labelled nonfall and fall movements. In this context, during the last decade, numerous publicly accessible databases have been released aiming at offering a common benchmarking tool for the validation of the new proposals on FDSs. This work offers a comparative and updated analysis of these existing repositories. For this purpose, the samples contained in the datasets are characterized by different statistics that model diverse aspects of the mobility of the human body in the time interval where the greatest change in the acceleration module is identified. By using one-way analysis of variance (ANOVA) on the series of these features, the comparison shows the significant differences detected between the datasets, even when comparing activities that require a similar degree of physical effort. This heterogeneity, which may result from the great variability of the sensors, experimental users, and testbeds employed to generate the datasets, is relevant because it casts doubt on the validity of the conclusions of many studies on FDSs, since most of the proposals in the literature are only evaluated using a single database.
由于跌倒对老年人的自主性和健康有严重影响,因此在使用带有无线传感器的身体远程监测领域,对可穿戴报警系统进行自动检测跌倒的研究引起了相当大的科学兴趣。由于在实际应用场景中系统验证存在困难,因此通常通过研究其对包含惯性传感器测量值的数据集的响应来评估跌倒检测系统(FDS),这些数据集是在执行标记的非跌倒和跌倒动作时捕获的。在这种情况下,在过去十年中,已经发布了许多公开可用的数据库,旨在为 FDS 的新提案提供一个通用的基准测试工具。本文对这些现有存储库进行了比较和更新的分析。为此,数据集包含的样本具有不同的统计信息,这些统计信息可以模拟人体在加速度模块最大变化识别时间段内的不同移动方面。通过对这些特征的系列进行单因素方差分析(ANOVA),比较显示即使比较需要相似体力的活动,数据集之间也存在显著差异。这种异质性可能是由于传感器、实验用户和用于生成数据集的测试床的巨大可变性引起的,这很重要,因为这使得许多关于 FDS 的研究结论的有效性受到质疑,因为文献中的大多数提案仅使用单个数据库进行评估。