Suppr超能文献

用于社交媒体帖子中基于多语言语言模型进行隐私保护抑郁症检测的联邦学习。

Federated learning for privacy-preserving depression detection with multilingual language models in social media posts.

作者信息

Khalil Samar Samir, Tawfik Noha S, Spruit Marco

机构信息

Computer Engineering Department, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.

Leiden Institute of Advanced Computer Science, Leiden University, 2333 CA Leiden, the Netherlands.

出版信息

Patterns (N Y). 2024 May 13;5(7):100990. doi: 10.1016/j.patter.2024.100990. eCollection 2024 Jul 12.

Abstract

The incidences of mental health illnesses, such as suicidal ideation and depression, are increasing, which highlights the urgent need for early detection methods. There is a growing interest in using natural language processing (NLP) models to analyze textual data from patients, but accessing patients' data for research purposes can be challenging due to privacy concerns. Federated learning (FL) is a promising approach that can balance the need for centralized learning with data ownership sensitivity. In this study, we examine the effectiveness of FL models in detecting depression by using a simulated multilingual dataset. We analyzed social media posts in five different languages with varying sample sizes. Our findings indicate that FL achieves strong performance in most cases while maintaining clients' privacy for both independent and non-independent client partitioning.

摘要

心理健康疾病的发生率,如自杀意念和抑郁症,正在上升,这凸显了对早期检测方法的迫切需求。人们越来越有兴趣使用自然语言处理(NLP)模型来分析患者的文本数据,但出于隐私考虑,获取患者数据用于研究目的可能具有挑战性。联邦学习(FL)是一种很有前途的方法,可以在集中学习的需求与数据所有权敏感性之间取得平衡。在本研究中,我们通过使用模拟多语言数据集来检验联邦学习模型在检测抑郁症方面的有效性。我们分析了五种不同语言、样本量各异的社交媒体帖子。我们的研究结果表明,联邦学习在大多数情况下都能取得强大的性能,同时在独立和非独立客户端分区中都能保护客户端的隐私。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/11284503/950c00c15852/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验