Suppr超能文献

基于弹性时间窗口和空间金字塔池化的纺锤体检测。

Spindle Detection Based on Elastic Time Window and Spatial Pyramid Pooling.

机构信息

School of Software, South China Normal University, 528200 Foshan, Guangdong, China.

Research Center for Brain-Computer Interface, Pazhou Laboratory, 510330 Guangzhou, Guagngdong, China.

出版信息

J Integr Neurosci. 2024 Jul 17;23(7):134. doi: 10.31083/j.jin2307134.

Abstract

BACKGROUND

Sleep spindles have emerged as valuable biomarkers for assessing cognitive abilities and related disorders, underscoring the importance of their detection in clinical research. However, template matching-based algorithms using fixed templates may not be able to fully adapt to spindles of different durations. Moreover, inspired by the multiscale feature extraction of images, the use of multiscale feature extraction methods can be used to better adapt to spindles of different frequencies and durations.

METHODS

Therefore, this study proposes a novel automatic spindle detection algorithm based on elastic time windows and spatial pyramid pooling (SPP) for extracting multiscale features. The algorithm utilizes elastic time windows to segment electroencephalogram (EEG) signals, enabling the extraction of features across multiple scales. This approach accommodates significant variations in spindle duration and polarization positioning during different EEG epochs. Additionally, spatial pyramid pooling is integrated into a depthwise separable convolutional (DSC) network to perform multiscale pooling on the segmented spindle signal features at different scales.

RESULTS

Compared with existing template matching algorithms, this algorithm's spindle wave polarization positioning is more consistent with the real situation. Experimental results conducted on the public dataset DREAMS show that the average accuracy of this algorithm reaches 95.75%, with an average negative predictive value (NPV) of 96.55%, indicating its advanced performance.

CONCLUSIONS

The effectiveness of each module was verified through thorough ablation experiments. More importantly, the algorithm shows strong robustness when faced with changes in different experimental subjects. This feature makes the algorithm more accurate at identifying sleep spindles and is expected to help experts automatically detect spindles in sleep EEG signals, reduce the workload and time of manual detection, and improve efficiency.

摘要

背景

睡眠纺锤波已成为评估认知能力和相关障碍的有价值的生物标志物,这凸显了在临床研究中检测它们的重要性。然而,基于固定模板的模板匹配算法可能无法完全适应不同时长的纺锤波。此外,受图像多尺度特征提取的启发,使用多尺度特征提取方法可以更好地适应不同频率和时长的纺锤波。

方法

因此,本研究提出了一种基于弹性时窗和空间金字塔池化(SPP)的新型自动纺锤波检测算法,用于提取多尺度特征。该算法利用弹性时窗对脑电图(EEG)信号进行分段,从而能够在多个尺度上提取特征。这种方法可以适应不同 EEG 时段中纺锤波时长和极化定位的显著变化。此外,空间金字塔池化被集成到深度可分离卷积(DSC)网络中,以对不同尺度上分段的纺锤波信号特征进行多尺度池化。

结果

与现有的模板匹配算法相比,该算法的纺锤波极化定位与实际情况更加一致。在公共数据集 DREAMS 上进行的实验结果表明,该算法的平均准确率达到 95.75%,平均负预测值(NPV)为 96.55%,表明其性能先进。

结论

通过彻底的消融实验验证了每个模块的有效性。更重要的是,该算法在面对不同实验对象的变化时表现出很强的鲁棒性。这一特性使得该算法能够更准确地识别睡眠纺锤波,有望帮助专家自动检测睡眠 EEG 信号中的纺锤波,减少手动检测的工作量和时间,提高效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验