Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
Invest Ophthalmol Vis Sci. 2024 Jul 1;65(8):50. doi: 10.1167/iovs.65.8.50.
Retinal microvascular changes are associated with ischemic stroke, and optical coherence tomography angiography (OCTA) is a potential tool to reveal the retinal microvasculature. We investigated the feasibility of using the OCTA image to automatically identify ischemic stroke and its subtypes (i.e. lacunar and non-lacunar stroke), and exploited the association of retinal biomarkers with the subtypes of ischemic stroke.
Two cohorts were included in this study and a total of 1730 eyes from 865 participants were studied. A deep learning model was developed to discriminate the subjects with ischemic stroke from healthy controls and to distinguish the subtypes of ischemic stroke. We also extracted geometric parameters of the retinal microvasculature at different retinal layers to investigate the correlations.
Superficial vascular plexus (SVP) yielded the highest areas under the receiver operating characteristic curve (AUCs) of 0.922 and 0.871 for the ischemic stroke detection and stroke subtypes classification, respectively. For external data validation, our model achieved an AUC of 0.822 and 0.766 for the ischemic stroke detection and stroke subtypes classification, respectively. When parameterizing the OCTA images, we showed individuals with ischemic strokes had increased SVP tortuosity (B = 0.085, 95% confidence interval [CI] = 0.005-0.166, P = 0.038) and reduced FAZ circularity (B = -0.212, 95% CI = -0.42 to -0.005, P = 0.045); non-lacunar stroke had reduced SVP FAZ circularity (P = 0.027) compared to lacunar stroke.
Our study demonstrates the applicability of artificial intelligence (AI)-enhanced OCTA image analysis for ischemic stroke detection and its subtypes classification. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of ischemic stroke and its subtypes.
视网膜微血管变化与缺血性脑卒中有关,光学相干断层血管造影(OCTA)是一种揭示视网膜微血管的潜在工具。我们研究了使用 OCTA 图像自动识别缺血性卒中和其亚型(即腔隙性和非腔隙性脑卒中)的可行性,并利用视网膜生物标志物与缺血性脑卒中亚型的相关性。
本研究纳入了两个队列,共纳入了 865 名参与者的 1730 只眼。开发了一种深度学习模型来区分缺血性脑卒中患者和健康对照组,并区分缺血性脑卒中的亚型。我们还提取了不同视网膜层的视网膜微血管的几何参数来进行相关性研究。
浅层血管丛(SVP)在缺血性脑卒中检测和脑卒中亚型分类中的受试者识别的受试者工作特征曲线下面积(AUC)最高,分别为 0.922 和 0.871。对于外部数据验证,我们的模型在缺血性脑卒中检测和脑卒中亚型分类中的 AUC 分别为 0.822 和 0.766。在 OCTA 图像参数化时,我们发现缺血性脑卒中患者的 SVP 迂曲度增加(B=0.085,95%置信区间[CI]:0.005-0.166,P=0.038),FAZ 圆度降低(B=-0.212,95%CI:-0.42 至-0.005,P=0.045);与腔隙性脑卒中相比,非腔隙性脑卒中的 SVP-FAZ 圆度降低(P=0.027)。
本研究证明了人工智能(AI)增强的 OCTA 图像分析在缺血性脑卒中检测及其亚型分类中的适用性。来自视网膜 OCTA 图像的生物标志物可为缺血性脑卒中及其亚型的临床决策和诊断提供有用信息。