Suppr超能文献

用于多器官病理图像分类的空间约束和无约束双图交互网络

Spatially-Constrained and -Unconstrained Bi-Graph Interaction Network for Multi-Organ Pathology Image Classification.

作者信息

Bui Doanh C, Song Boram, Kim Kyungeun, Kwak Jin Tae

出版信息

IEEE Trans Med Imaging. 2025 Jan;44(1):194-206. doi: 10.1109/TMI.2024.3436080. Epub 2025 Jan 2.

Abstract

In computational pathology, graphs have shown to be promising for pathology image analysis. There exist various graph structures that can discover differing features of pathology images. However, the combination and interaction between differing graph structures have not been fully studied and utilized for pathology image analysis. In this study, we propose a parallel, bi-graph neural network, designated as SCUBa-Net, equipped with both graph convolutional networks and Transformers, that processes a pathology image as two distinct graphs, including a spatially-constrained graph and a spatially-unconstrained graph. For efficient and effective graph learning, we introduce two inter-graph interaction blocks and an intra-graph interaction block. The inter-graph interaction blocks learn the node-to-node interactions within each graph. The intra-graph interaction block learns the graph-to-graph interactions at both global- and local-levels with the help of the virtual nodes that collect and summarize the information from the entire graphs. SCUBa-Net is systematically evaluated on four multi-organ datasets, including colorectal, prostate, gastric, and bladder cancers. The experimental results demonstrate the effectiveness of SCUBa-Net in comparison to the state-of-the-art convolutional neural networks, Transformer, and graph neural networks.

摘要

在计算病理学中,图已被证明在病理学图像分析方面具有潜力。存在各种图结构,它们可以发现病理学图像的不同特征。然而,不同图结构之间的组合与相互作用尚未得到充分研究,也未被充分用于病理学图像分析。在本研究中,我们提出了一种并行双图神经网络,称为SCUBa-Net,它配备了图卷积网络和Transformer,将病理学图像作为两个不同的图进行处理,包括一个空间受限图和一个空间不受限图。为了实现高效有效的图学习,我们引入了两个图间交互块和一个图内交互块。图间交互块学习每个图内节点到节点的交互。图内交互块借助从整个图收集和汇总信息的虚拟节点,在全局和局部层面学习图到图的交互。我们在包括结直肠癌、前列腺癌、胃癌和膀胱癌在内的四个多器官数据集上对SCUBa-Net进行了系统评估。实验结果表明,与当前最先进的卷积神经网络、Transformer和图神经网络相比,SCUBa-Net是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验