Suppr超能文献

深度学习识别与吸烟状况相关的膀胱癌组织病理学变化。

Deep learning identifies histopathologic changes in bladder cancers associated with smoke exposure status.

机构信息

AI Vobis, Palo Alto, California, United States of America.

Department of Pathology and Laboratory Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America.

出版信息

PLoS One. 2024 Jul 31;19(7):e0305135. doi: 10.1371/journal.pone.0305135. eCollection 2024.

Abstract

Smoke exposure is associated with bladder cancer (BC). However, little is known about whether the histologic changes of BC can predict the status of smoke exposure. Given this knowledge gap, the current study investigated the potential association between histology images and smoke exposure status. A total of 483 whole-slide histology images of 285 unique cases of BC were available from multiple centers for BC diagnosis. A deep learning model was developed to predict the smoke exposure status and externally validated on BC cases. The development set consisted of 66 cases from two centers. The external validation consisted of 94 cases from remaining centers for patients who either never smoked cigarettes or were active smokers at the time of diagnosis. The threshold for binary categorization was fixed to the median confidence score (65) of the development set. On external validation, AUC was used to assess the randomness of predicted smoke status; we utilized latent feature presentation to determine common histologic patterns for smoke exposure status and mixed effect logistic regression models determined the parameter independence from BC grade, gender, time to diagnosis, and age at diagnosis. We used 2,000-times bootstrap resampling to estimate the 95% Confidence Interval (CI) on the external validation set. The results showed an AUC of 0.67 (95% CI: 0.58-0.76), indicating non-randomness of model classification, with a specificity of 51.2% and sensitivity of 82.2%. Multivariate analyses revealed that our model provided an independent predictor for smoke exposure status derived from histology images, with an odds ratio of 1.710 (95% CI: 1.148-2.54). Common histologic patterns of BC were found in active or never smokers. In conclusion, deep learning reveals histopathologic features of BC that are predictive of smoke exposure and, therefore, may provide valuable information regarding smoke exposure status.

摘要

烟雾暴露与膀胱癌(BC)有关。然而,对于 BC 的组织学变化是否可以预测烟雾暴露状态,人们知之甚少。鉴于这一知识空白,本研究调查了组织学图像与烟雾暴露状态之间的潜在关联。共有来自多个中心的 285 例独特 BC 病例的 483 张全玻片组织学图像可用于 BC 诊断。开发了一种深度学习模型来预测烟雾暴露状态,并在 BC 病例中进行了外部验证。开发集由来自两个中心的 66 例病例组成。外部验证集由其余中心的 94 例病例组成,这些病例中的患者在诊断时要么从不吸烟,要么是活跃的吸烟者。二分类的阈值固定为开发集置信度得分(65)的中位数。在外部验证中,AUC 用于评估预测的烟雾状态的随机性;我们利用潜在特征呈现来确定与烟雾暴露状态相关的常见组织学模式,并利用混合效应逻辑回归模型确定了 BC 分级、性别、诊断时间和诊断时年龄的参数独立性。我们使用 2000 次引导重采样来估计外部验证集的 95%置信区间(CI)。结果显示 AUC 为 0.67(95%CI:0.58-0.76),表明模型分类非随机性,特异性为 51.2%,敏感性为 82.2%。多变量分析显示,我们的模型提供了一个独立的预测因子,用于从组织学图像中推断烟雾暴露状态,优势比为 1.710(95%CI:1.148-2.54)。活跃吸烟者或从不吸烟者的 BC 具有共同的组织学模式。总之,深度学习揭示了 BC 的组织病理学特征,这些特征可预测烟雾暴露,因此可能提供有关烟雾暴露状态的有价值信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27ee/11290674/c8ff024f1089/pone.0305135.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验