GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; In Vitro In Vivo Translation, GSK plc, Collegeville, PA, 19426, USA.
In Vitro In Vivo Translation, GSK plc, Collegeville, PA, 19426, USA.
Redox Biol. 2024 Sep;75:103280. doi: 10.1016/j.redox.2024.103280. Epub 2024 Jul 22.
The DNA damage response (DDR) is a fundamental readout for evaluating efficacy of cancer therapeutics, many of which target DNA associated processes. Current techniques to evaluate DDR rely on immunostaining for phosphorylated histone H2AX (γH2AX), which is an indicator of DNA double-strand breaks. While γH2AX immunostaining can provide a snapshot of DDR in fixed cell and tissue samples, this method is technically cumbersome due to temporal monitoring of DDR requiring timepoint replicates, extensive assay development efforts for 3D cell culture samples such as organoids, and time-consuming protocols for γH2AX immunostaining and its evaluation. The goal of this current study is to reduce overall burden on assay duration and development in non-small cell lung cancer (NSCLC) organoids by leveraging label-free multiphoton imaging. In this study, simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy was used to provide rich intracellular information based on endogenous contrasts. SLAM microscopy enables imaging of live samples eliminating the need to generate sacrificial sample replicates and has improved image acquisition in 3D space over conventional confocal microscopy. Predictive modeling between label-free SLAM microscopy and γH2AX immunostained images confirmed strong correlation between SLAM image features and γH2AX signal. Across multiple DNA targeting chemotherapeutics and multiple patient-derived NSCLC organoid lines, the optical redox ratio and third harmonic generation channels were used to robustly predict DDR. Imaging via SLAM microscopy can be used to more rapidly predict DDR in live 3D NSCLC organoids with minimal sample handling and without labeling.
DNA 损伤反应(DDR)是评估癌症治疗疗效的基本指标,许多癌症治疗方法都针对与 DNA 相关的过程。目前评估 DDR 的技术依赖于磷酸化组蛋白 H2AX(γH2AX)的免疫染色,这是 DNA 双链断裂的指标。虽然 γH2AX 免疫染色可以提供固定细胞和组织样本中 DDR 的快照,但由于 DDR 需要时间点重复进行时间监测,因此该方法在技术上很繁琐,需要为 3D 细胞培养样本(如类器官)开发广泛的检测方法,并且 γH2AX 免疫染色及其评估的协议也很耗时。本研究的目的是通过利用无标记多光子成像来减少非小细胞肺癌(NSCLC)类器官中测定持续时间和开发的总体负担。在这项研究中,同时使用无标记多谐波(SLAM)显微镜进行无标记自动荧光多谐波(SLAM)显微镜,以基于内源性对比提供丰富的细胞内信息。SLAM 显微镜能够对活样本进行成像,无需生成牺牲性样本重复,并且在 3D 空间中的图像采集优于传统共聚焦显微镜。无标记 SLAM 显微镜和 γH2AX 免疫染色图像之间的预测建模证实了 SLAM 图像特征与 γH2AX 信号之间的强相关性。在多种靶向 DNA 的化疗药物和多种患者来源的 NSCLC 类器官系中,光学氧化还原比和三阶谐波生成通道被用于稳健地预测 DDR。通过 SLAM 显微镜进行成像可以快速预测活的 3D NSCLC 类器官中的 DDR,而对样本的处理和标记要求最小。