Suppr超能文献

深度学习在超声定位显微镜中的应用。

Deep Learning for Ultrasound Localization Microscopy.

出版信息

IEEE Trans Med Imaging. 2020 Oct;39(10):3064-3078. doi: 10.1109/TMI.2020.2986781. Epub 2020 Apr 9.

Abstract

By localizing microbubbles (MBs) in the vasculature, ultrasound localization microscopy (ULM) has recently been proposed, which greatly improves the spatial resolution of ultrasound (US) imaging and will be helpful for clinical diagnosis. Nevertheless, several challenges remain in fast ULM imaging. The main problems are that current localization methods used to implement fast ULM imaging, e.g., a previously reported localization method based on sparse recovery (CS-ULM), suffer from long data-processing time and exhaustive parameter tuning (optimization). To address these problems, in this paper, we propose a ULM method based on deep learning, which is achieved by using a modified sub-pixel convolutional neural network (CNN), termed as mSPCN-ULM. Simulations and in vivo experiments are performed to evaluate the performance of mSPCN-ULM. Simulation results show that even if under high-density condition (6.4 MBs/mm), a high localization precision ( [Formula: see text] in the lateral direction and [Formula: see text] in the axial direction) and a high localization reliability (Jaccard index of 0.66) can be obtained by mSPCN-ULM, compared to CS-ULM. The in vivo experimental results indicate that with plane wave scan at a transmit center frequency of 15.625 MHz, microvessels with diameters of [Formula: see text] can be detected and adjacent microvessels with a distance of [Formula: see text] can be separated. Furthermore, when using GPU acceleration, the data-processing time of mSPCN-ULM can be shortened to ~6 sec/frame in the simulations and ~23 sec/frame in the in vivo experiments, which is 3-4 orders of magnitude faster than CS-ULM. Finally, once the network is trained, mSPCN-ULM does not need parameter tuning to implement ULM. As a result, mSPCN-ULM opens the door to implement ULM with fast data-processing speed, high imaging accuracy, short data-acquisition time, and high flexibility (robustness to parameters) characteristics.

摘要

通过将微泡(MBs)定位于脉管系统中,最近提出了超声定位显微镜(ULM),这极大地提高了超声(US)成像的空间分辨率,将有助于临床诊断。然而,在快速 ULM 成像中仍存在一些挑战。主要问题是,当前用于实现快速 ULM 成像的定位方法,例如以前基于稀疏恢复(CS-ULM)的定位方法,存在数据处理时间长和参数详尽调整(优化)的问题。为了解决这些问题,在本文中,我们提出了一种基于深度学习的 ULM 方法,该方法通过使用改进的亚像素卷积神经网络(CNN)来实现,称为 mSPCN-ULM。通过模拟和体内实验来评估 mSPCN-ULM 的性能。模拟结果表明,即使在高密度条件(6.4 MBs/mm)下,mSPCN-ULM 也可以获得高精度的定位精度(横向方向为 [Formula: see text],轴向方向为 [Formula: see text])和高定位可靠性(Jaccard 指数为 0.66),与 CS-ULM 相比。体内实验结果表明,在 15.625 MHz 发射中心频率下进行平面波扫描时,可以检测到直径为 [Formula: see text] 的微血管,并且可以分离距离为 [Formula: see text] 的相邻微血管。此外,使用 GPU 加速时,mSPCN-ULM 的数据处理时间可以在模拟中缩短至约 6 秒/帧,在体内实验中缩短至约 23 秒/帧,比 CS-ULM 快 3-4 个数量级。最后,一旦网络经过训练,mSPCN-ULM 就无需进行参数调整即可实现 ULM。因此,mSPCN-ULM 为实现具有快速数据处理速度,高成像精度,短数据采集时间和高灵活性(对参数的鲁棒性)的 ULM 打开了大门。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验