Suppr超能文献

使用双向长短时记忆网络进行利尿剂剂量调整的体重时间序列预测。

Time series forecasting of weight for diuretic dose adjustment using bidirectional long short-term memory.

机构信息

Department of Medical ScienceAsan Medical Institute of Convergence Science and TechnologyAsan Medical Center, University of Ulsan College of Medicine, 88, Olympicro 43Gil, Songpagu, 05505, Seoul, Republic of Korea.

Division of Cardiology, Asan Medical Center, 88, Olympicro 43Gil, Songpagu, 05505, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Jul 31;14(1):17723. doi: 10.1038/s41598-024-68663-6.

Abstract

Loop diuretics are prevailing drugs to manage fluid overload in heart failure. However, adjusting to loop diuretic doses is strenuous due to the lack of a diuretic guideline. Accordingly, we developed a novel clinician decision support system for adjusting loop diuretics dosage with a Long Short-Term Memory (LSTM) algorithm using time-series EMRs. Weight measurements were used as the target to estimate fluid loss during diuretic therapy. We designed the TSFD-LSTM, a bi-directional LSTM model with an attention mechanism, to forecast weight change 48 h after heart failure patients were injected with loop diuretics. The model utilized 65 variables, including disease conditions, concurrent medications, laboratory results, vital signs, and physical measurements from EMRs. The framework processed four sequences simultaneously as inputs. An ablation study on attention mechanisms and a comparison with the transformer model as a baseline were conducted. The TSFD-LSTM outperformed the other models, achieving 85% predictive accuracy with MAE and MSE values of 0.56 and 1.45, respectively. Thus, the TSFD-LSTM model can aid in personalized loop diuretic treatment and prevent adverse drug events, contributing to improved healthcare efficacy for heart failure patients.

摘要

在心力衰竭中,噻嗪类利尿剂是治疗液体超负荷的主要药物。然而,由于缺乏利尿剂指南,调整噻嗪类利尿剂的剂量非常困难。因此,我们开发了一种使用长短期记忆(LSTM)算法的新型临床医生决策支持系统,通过时间序列电子病历(EMR)来调整噻嗪类利尿剂的剂量。体重测量被用作目标,以估计利尿剂治疗期间的液体丢失。我们设计了 TSFD-LSTM,这是一种具有注意力机制的双向 LSTM 模型,用于预测心力衰竭患者注射噻嗪类利尿剂后 48 小时的体重变化。该模型利用 EMR 中的 65 个变量,包括疾病状况、同时使用的药物、实验室结果、生命体征和身体测量值。该框架同时作为输入处理四个序列。我们进行了注意力机制的消融研究,并与作为基线的变压器模型进行了比较。TSFD-LSTM 表现优于其他模型,其预测准确率为 85%,平均绝对误差(MAE)和均方误差(MSE)值分别为 0.56 和 1.45。因此,TSFD-LSTM 模型可以帮助进行个性化的噻嗪类利尿剂治疗,预防药物不良事件,从而提高心力衰竭患者的医疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e5a/11292016/d4076c6fabeb/41598_2024_68663_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验