Arjmandi Najmeh, Nasseri Shahrokh, Momennezhad Mehdi, Mehdizadeh Alireza, Hosseini Sare, Mohebbi Shokoufeh, Tehranizadeh Amin Amiri, Pishevar Zohreh
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Medical Physics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Discov Oncol. 2024 Jul 31;15(1):323. doi: 10.1007/s12672-024-01177-9.
PURPOSE OBJECTIVE(S): Manual contouring of the prostate region in planning computed tomography (CT) images is a challenging task due to factors such as low contrast in soft tissues, inter- and intra-observer variability, and variations in organ size and shape. Consequently, the use of automated contouring methods can offer significant advantages. In this study, we aimed to investigate automated male pelvic multi-organ contouring in multi-center planning CT images using a hybrid convolutional neural network-vision transformer (CNN-ViT) that combines convolutional and ViT techniques.
MATERIALS/METHODS: We used retrospective data from 104 localized prostate cancer patients, with delineations of the clinical target volume (CTV) and critical organs at risk (OAR) for external beam radiotherapy. We introduced a novel attention-based fusion module that merges detailed features extracted through convolution with the global features obtained through the ViT.
The average dice similarity coefficients (DSCs) achieved by VGG16-UNet-ViT for the prostate, bladder, rectum, right femoral head (RFH), and left femoral head (LFH) were 91.75%, 95.32%, 87.00%, 96.30%, and 96.34%, respectively. Experiments conducted on multi-center planning CT images indicate that combining the ViT structure with the CNN network resulted in superior performance for all organs compared to pure CNN and transformer architectures. Furthermore, the proposed method achieves more precise contours compared to state-of-the-art techniques.
Results demonstrate that integrating ViT into CNN architectures significantly improves segmentation performance. These results show promise as a reliable and efficient tool to facilitate prostate radiotherapy treatment planning.
在计划计算机断层扫描(CT)图像中对前列腺区域进行手动轮廓勾画是一项具有挑战性的任务,原因包括软组织对比度低、观察者间和观察者内的变异性以及器官大小和形状的变化等因素。因此,使用自动轮廓勾画方法可带来显著优势。在本研究中,我们旨在使用结合了卷积技术和视觉Transformer(ViT)技术的混合卷积神经网络 - 视觉Transformer(CNN - ViT),研究多中心计划CT图像中的男性盆腔多器官自动轮廓勾画。
材料/方法:我们使用了104例局限性前列腺癌患者的回顾性数据,其中包括外照射放疗的临床靶区(CTV)和危及器官(OAR)的勾画。我们引入了一种新颖的基于注意力的融合模块,该模块将通过卷积提取的详细特征与通过ViT获得的全局特征合并。
VGG16 - UNet - ViT对前列腺、膀胱、直肠、右股骨头(RFH)和左股骨头(LFH)获得的平均骰子相似系数(DSC)分别为91.75%、95.32%、87.00%、96.30%和96.34%。在多中心计划CT图像上进行的实验表明,与纯CNN和Transformer架构相比,将ViT结构与CNN网络相结合对所有器官都产生了更好的性能。此外,与现有技术相比,所提出的方法实现了更精确的轮廓。
结果表明,将ViT集成到CNN架构中可显著提高分割性能。这些结果有望成为促进前列腺放射治疗计划的可靠且高效的工具。