Suppr超能文献

一种预测达托霉素起始剂量的机器学习算法。

A Machine Learning Algorithm to Predict the Starting Dose of Daptomycin.

机构信息

Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU Limoges, France.

Service de Pharmacie, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France.

出版信息

Clin Pharmacokinet. 2024 Aug;63(8):1137-1146. doi: 10.1007/s40262-024-01405-z. Epub 2024 Jul 31.

Abstract

BACKGROUND AND OBJECTIVE

The dosage of daptomycin is usually based on body weight. However, it has been shown that this approach yields too high an exposure in obese patients. Pharmacokinetic and pharmacodynamic indexes (PK/PD) have been proposed for daptomycin's antibacterial effect (AUC/CMI >666) and toxicity (C0 > 24.3 mg/L). We previously developed machine learning (ML) algorithms to predict starting doses based on Monte Carlo simulations. We propose a new way to perform probability of target attainment based on an ML algorithm to predict the daptomycin starting dose.

METHODS

The Dvorchik model of daptomycin was implemented in the mrgsolve R package and 4950 pharmacokinetic profiles were simulated with doses ranging from 4 to 12 mg/kg. We trained and benchmarked four machine learning algorithms and selected the best to iteratively search for the optimal dose of daptomycin maximizing the event (AUC/CMI > 666 and C0 < 24.3 mg/L). The ML algorithm was evaluated in simulations and an external database of real patients in comparison with population pharmacokinetics.

RESULTS

The performance of the Xgboost algorithms developed to predict the event (ROC AUC) in the training and test set were 0.762 and 0.761, respectively. The most important prediction variables were dose, creatinine clearance, body weight and sex. In the external database of real patients, the starting dose administered based on the ML algorithm significantly improved the target attainment by 7.9% (p-value = 0.02929) in comparison with the dose administered based on body weight.

CONCLUSION

The developed algorithm improved the target attainment for daptomycin in comparison with weight-based dosing. We built a Shiny app to calculate the optimal starting dose.

摘要

背景与目的

达托霉素的剂量通常基于体重。然而,已经表明这种方法在肥胖患者中产生的暴露量过高。已经提出了药代动力学和药效学指标(AUC/CMI>666)和毒性(C0>24.3mg/L)用于达托霉素的抗菌作用。我们之前开发了基于蒙特卡罗模拟的机器学习(ML)算法来预测起始剂量。我们提出了一种新的方法,通过 ML 算法来预测达托霉素起始剂量,从而进行基于概率的目标达成分析。

方法

达托霉素的 Dvorchik 模型在 mrgsolve R 包中实现,模拟了 4950 个药代动力学曲线,剂量范围为 4 至 12mg/kg。我们训练和基准测试了四种机器学习算法,并选择了最佳算法来迭代搜索达托霉素的最佳剂量,以最大化事件(AUC/CMI>666 和 C0<24.3mg/L)。将 ML 算法在模拟和真实患者的外部数据库中进行了评估,并与群体药代动力学进行了比较。

结果

为预测事件(ROC AUC)而开发的 Xgboost 算法在训练集和测试集中的性能分别为 0.762 和 0.761。最重要的预测变量是剂量、肌酐清除率、体重和性别。在真实患者的外部数据库中,基于 ML 算法的起始剂量与基于体重的剂量相比,显著提高了 7.9%的目标达成率(p 值=0.02929)。

结论

与基于体重的剂量相比,开发的算法提高了达托霉素的目标达成率。我们构建了一个 Shiny 应用程序来计算最佳起始剂量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验