Suppr超能文献

评估达托霉素浓度时间曲线下面积贝叶斯估计的有限采样策略:简短交流。

Evaluation of Limited Sampling Strategies for Bayesian Estimation of Daptomycin Area Under the Concentration-Time Curve: A Short Communication.

机构信息

Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Pharmacie, Lyon.

Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire de Biométrie et Biologie Évolutive Villeurbanne.

出版信息

Ther Drug Monit. 2023 Aug 1;45(4):562-565. doi: 10.1097/FTD.0000000000001070. Epub 2023 Jan 2.

Abstract

PURPOSE

Increasing evidence supports daptomycin therapeutic drug monitoring. The author's reference center used to perform therapeutic drug monitoring in patients who receive high-dose daptomycin for bone and joint infections, with a three-sample strategy to estimate the daptomycin daily area under the concentration-time curve (AUC). The objective of this study was to evaluate simpler strategies based on only 2 or 1 sample(s).

METHODS

The authors used the BestDose software to estimate the daptomycin AUC after Bayesian posterior estimation of individual pharmacokinetic (PK) parameters at steady state. The reference AUC (AUC full ) was based on 3 samples obtained predose (T0) and approximately 1 hour (T1) and 6 hours (T6) after the start of a 30-minute infusion of IV daptomycin. It was compared with the AUC based on all possible 2-sample and 1-sample strategies. Bias, imprecision, regression, and Bland-Altman plots were used to assess the performance of the alternative strategies.

RESULTS

Data from 77 patients were analyzed. The mean AUC full value was 936 ± 373 mg·h/L. The best 2-sample strategy was T0 + T6, with a mean prediction bias of 0.13 mg·h/L and absolute imprecision of 3%. The T0 + T1 strategy also performed well with a mean bias of -10 mg·h/L and imprecision of 3%. The best 1-sample strategy was the T6 sample only with a bias of 2.19 mg·h/L and imprecision of 6%.

CONCLUSIONS

Bayesian estimation of daptomycin AUC based on a two-sample strategy was associated with negligible bias and imprecision compared with the author's usual three-sample strategy. The trough and peak strategy may shorten and simplify patient visits and reduce assay labor and costs.

摘要

目的

越来越多的证据支持达托霉素治疗药物监测。作者所在的参考中心曾经对接受高剂量达托霉素治疗骨和关节感染的患者进行治疗药物监测,采用三样本策略来估计达托霉素的每日浓度-时间曲线下面积(AUC)。本研究的目的是评估仅基于 2 或 1 个样本的更简单策略。

方法

作者使用 BestDose 软件,通过贝叶斯后验估计个体药代动力学(PK)参数稳态下的达托霉素 AUC。参考 AUC(AUC full )基于 3 个样本,分别在静脉滴注达托霉素 30 分钟开始前(T0)和大约 1 小时(T1)及 6 小时(T6)时获得。它与基于所有可能的 2 样本和 1 样本策略的 AUC 进行了比较。偏差、不精密度、回归和 Bland-Altman 图用于评估替代策略的性能。

结果

对 77 例患者的数据进行了分析。AUC full 值的平均值为 936 ± 373 mg·h/L。最佳的 2 样本策略是 T0 + T6,平均预测偏差为 0.13 mg·h/L,绝对不精密度为 3%。T0 + T1 策略的表现也很好,平均偏差为-10 mg·h/L,不精密度为 3%。最佳的 1 样本策略是仅 T6 样本,偏差为 2.19 mg·h/L,不精密度为 6%。

结论

与作者常用的三样本策略相比,基于两样本策略的达托霉素 AUC 的贝叶斯估计与可忽略的偏差和不精密度相关。谷值和峰值策略可能会缩短并简化患者就诊次数,并减少检测劳动力和成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验