Suppr超能文献

基于蒙特卡罗模拟的机器学习方法,从两种浓度预测达托霉素的暴露量。

A machine learning approach to predict daptomycin exposure from two concentrations based on Monte Carlo simulations.

机构信息

Service de Maladies Infectieuses et Tropicales, CHU Dupuytren, Limoges, France.

Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU Dupuytren, Limoges, France.

出版信息

Antimicrob Agents Chemother. 2024 May 2;68(5):e0141523. doi: 10.1128/aac.01415-23. Epub 2024 Mar 19.

Abstract

Daptomycin is a concentration-dependent lipopeptide antibiotic for which exposure/effect relationships have been shown. Machine learning (ML) algorithms, developed to predict the individual exposure to drugs, have shown very good performances in comparison to maximum a posteriori Bayesian estimation (MAP-BE). The aim of this work was to predict the area under the blood concentration curve (AUC) of daptomycin from two samples and a few covariates using XGBoost ML algorithm trained on Monte Carlo simulations. Five thousand one hundred fifty patients were simulated from two literature population pharmacokinetics models. Data from the first model were split into a training set (75%) and a testing set (25%). Four ML algorithms were built to learn AUC based on daptomycin blood concentration samples at pre-dose and 1 h post-dose. The XGBoost model (best ML algorithm) with the lowest root mean square error (RMSE) in a 10-fold cross-validation experiment was evaluated in both the test set and the simulations from the second population pharmacokinetic model (validation). The ML model based on the two concentrations, the differences between these concentrations, and five other covariates (sex, weight, daptomycin dose, creatinine clearance, and body temperature) yielded very good AUC estimation in the test (relative bias/RMSE = 0.43/7.69%) and validation sets (relative bias/RMSE = 4.61/6.63%). The XGBoost ML model developed allowed accurate estimation of daptomycin AUC using C0, C1h, and a few covariates and could be used for exposure estimation and dose adjustment. This ML approach can facilitate the conduct of future therapeutic drug monitoring (TDM) studies.

摘要

达托霉素是一种浓度依赖性脂肽类抗生素,已证明其具有暴露/效应关系。为了预测个体对药物的暴露情况,已经开发出机器学习 (ML) 算法,与最大后验贝叶斯估计 (MAP-BE) 相比,这些算法的性能非常出色。本研究的目的是使用基于蒙特卡罗模拟训练的 XGBoost ML 算法,从两个样本和几个协变量预测达托霉素的血药浓度曲线下面积 (AUC)。从两个文献群体药代动力学模型模拟了 5150 名患者。第一个模型的数据分为训练集 (75%)和测试集 (25%)。构建了四个 ML 算法,以根据达托霉素血药浓度样本在给药前和给药后 1 小时学习 AUC。在 10 折交叉验证实验中,具有最低均方根误差 (RMSE) 的 XGBoost 模型(最佳 ML 算法)在测试集和第二个群体药代动力学模型(验证)的模拟中进行了评估。基于两个浓度、这两个浓度之间的差异以及五个其他协变量(性别、体重、达托霉素剂量、肌酐清除率和体温)的 ML 模型在测试集(相对偏差/RMSE = 0.43/7.69%)和验证集(相对偏差/RMSE = 4.61/6.63%)中得出了非常好的 AUC 估计值。开发的 XGBoost ML 模型能够使用 C0、C1h 和几个协变量准确估计达托霉素 AUC,可用于暴露估计和剂量调整。这种 ML 方法可以促进未来治疗药物监测 (TDM) 研究的开展。

相似文献

2
A Machine Learning Algorithm to Predict the Starting Dose of Daptomycin.一种预测达托霉素起始剂量的机器学习算法。
Clin Pharmacokinet. 2024 Aug;63(8):1137-1146. doi: 10.1007/s40262-024-01405-z. Epub 2024 Jul 31.
4
Mycophenolic Acid Exposure Prediction Using Machine Learning.基于机器学习的霉酚酸暴露预测。
Clin Pharmacol Ther. 2021 Aug;110(2):370-379. doi: 10.1002/cpt.2216. Epub 2021 Apr 6.
7
Tacrolimus Exposure Prediction Using Machine Learning.他克莫司暴露预测的机器学习方法。
Clin Pharmacol Ther. 2021 Aug;110(2):361-369. doi: 10.1002/cpt.2123. Epub 2021 Jan 18.
8
Population pharmacokinetics of daptomycin in critically ill patients.重症患者中达托霉素的群体药代动力学。
Int J Antimicrob Agents. 2018 Aug;52(2):158-165. doi: 10.1016/j.ijantimicag.2018.03.008. Epub 2018 Mar 20.

引用本文的文献

本文引用的文献

1
Machine Learning: A New Approach for Dose Individualization.机器学习:剂量个体化的新方法。
Clin Pharmacol Ther. 2024 Apr;115(4):727-744. doi: 10.1002/cpt.3049. Epub 2023 Sep 29.
3
Use of Machine Learning for Dosage Individualization of Vancomycin in Neonates.应用机器学习实现新生儿万古霉素个体化给药。
Clin Pharmacokinet. 2023 Aug;62(8):1105-1116. doi: 10.1007/s40262-023-01265-z. Epub 2023 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验