Univ. Limoges, IPPRITT, F-87000 Limoges, France; INSERM, IPPRITT, U1248, F-87000 Limoges, France; Department of Pharmacology and Toxicology, CHU Limoges, F-87000 Limoges, France.
Univ. Limoges, IPPRITT, F-87000 Limoges, France; INSERM, IPPRITT, U1248, F-87000 Limoges, France; Department of Pharmacology and Toxicology, CHU Limoges, F-87000 Limoges, France.
Pharmacol Res. 2021 May;167:105578. doi: 10.1016/j.phrs.2021.105578. Epub 2021 Mar 26.
We previously demonstrated that Machine learning (ML) algorithms can accurately estimate drug area under the curve (AUC) of tacrolimus or mycophenolate mofetil (MMF) based on limited information, as well as or even better than maximum a posteriori Bayesian estimation (MAP-BE). However, the major limitation in the development of such ML algorithms is the limited availability of large databases of concentration vs. time profiles for such drugs. The objectives of this study were: (i) to develop a Xgboost model to estimate tacrolimus inter-dose AUC based on concentration-time profiles obtained from a literature population pharmacokinetic (POPPK) model using Monte Carlo simulation; and (ii) to compare its performance with that of MAP-BE in external datasets of rich concentration-time profiles. The population parameters of a previously published PK model were used in the mrgsolve R package to simulate 9000 rich interdose tacrolimus profiles (one concentration simulated every 30 min) at steady-state. Data splitting was performed to obtain a training set (75%) and a test set (25%). Xgboost algorithms able to estimate tacrolimus AUC based on 2 or 3 concentrations were developed in the training set and the model with the lowest RMSE in a ten-fold cross-validation experiment was evaluated in the test set, as well as in 4 independent, rich PK datasets from transplant patients. ML algorithms based on 2 or 3 concentrations and a few covariates yielded excellent AUC estimation in the external validation datasets (relative bias < 5% and relative RMSE < 10%), comparable to those obtained with MAP-BE. In conclusion, Xgboost machine learning models trained on concentration-time profiles simulated using literature POPPK models allow accurate tacrolimus AUC estimation based on sparse concentration data. This study paves the way to the development of artificial intelligence at the service of precision therapeutic drug monitoring in different therapeutic areas.
我们之前已经证明,机器学习 (ML) 算法可以根据有限的信息准确地估算他克莫司或吗替麦考酚酯的药物 AUC(曲线下面积),其精度甚至可以优于最大后验贝叶斯估计 (MAP-BE)。然而,此类 ML 算法发展的主要限制是,此类药物的浓度-时间曲线数据有限,无法建立大型数据库。本研究的目的是:(i) 开发一种 Xgboost 模型,通过使用蒙特卡罗模拟从文献群体药代动力学 (POPPK) 模型获得的浓度-时间曲线估算他克莫司的间剂量 AUC;(ii) 将其性能与具有丰富浓度-时间曲线的外部数据集的 MAP-BE 进行比较。使用先前发表的 PK 模型的群体参数,在 mrgsolve R 包中模拟稳态下 9000 个丰富的他克莫司间剂量浓度曲线(每 30 分钟模拟一个浓度)。通过数据分割获得训练集(75%)和测试集(25%)。在训练集中开发能够基于 2 或 3 个浓度估算他克莫司 AUC 的 Xgboost 算法,并在 10 倍交叉验证实验中评估具有最低 RMSE 的模型在测试集中的表现,以及在 4 个来自移植患者的独立、丰富的 PK 数据集。基于 2 或 3 个浓度和几个协变量的 ML 算法在外部验证数据集中产生了出色的 AUC 估算值(相对偏差<5%,相对 RMSE<10%),与 MAP-BE 获得的结果相当。总之,基于使用文献 POPPK 模型模拟的浓度-时间曲线训练的 Xgboost 机器学习模型可以根据稀疏的浓度数据准确估算他克莫司 AUC。这项研究为在不同治疗领域开发人工智能服务于精准治疗药物监测铺平了道路。