W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Department of Chemistry, Emory University, Atlanta, GA, USA.
Nature. 2024 Aug;632(8023):209-217. doi: 10.1038/s41586-024-07742-0. Epub 2024 Jul 31.
Glutamate transmission and activation of ionotropic glutamate receptors are the fundamental means by which neurons control their excitability and neuroplasticity. The N-methyl-D-aspartate receptor (NMDAR) is unique among all ligand-gated channels, requiring two ligands-glutamate and glycine-for activation. These receptors function as heterotetrameric ion channels, with the channel opening dependent on the simultaneous binding of glycine and glutamate to the extracellular ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, respectively. The exact molecular mechanism for channel gating by the two ligands has been unclear, particularly without structures representing the open channel and apo states. Here we show that the channel gate opening requires tension in the linker connecting the LBD and transmembrane domain (TMD) and rotation of the extracellular domain relative to the TMD. Using electron cryomicroscopy, we captured the structure of the GluN1-GluN2B (GluN1-2B) NMDAR in its open state bound to a positive allosteric modulator. This process rotates and bends the pore-forming helices in GluN1 and GluN2B, altering the symmetry of the TMD channel from pseudofourfold to twofold. Structures of GluN1-2B NMDAR in apo and single-liganded states showed that binding of either glycine or glutamate alone leads to distinct GluN1-2B dimer arrangements but insufficient tension in the LBD-TMD linker for channel opening. This mechanistic framework identifies a key determinant for channel gating and a potential pharmacological strategy for modulating NMDAR activity.
谷氨酸传递和离子型谷氨酸受体的激活是神经元控制其兴奋性和神经可塑性的基本手段。N-甲基-D-天冬氨酸受体(NMDAR)在所有配体门控通道中是独特的,其激活需要两种配体——谷氨酸和甘氨酸。这些受体作为异四聚体离子通道发挥作用,通道的开启取决于甘氨酸和谷氨酸同时结合到 GluN1 和 GluN2 亚基的细胞外配体结合域(LBD)上。这两种配体对通道门控的精确分子机制尚不清楚,特别是在没有代表开放通道和apo 状态的结构的情况下。在这里,我们表明通道门控的开启需要连接 LBD 和跨膜域(TMD)的连接体的张力以及细胞外域相对于 TMD 的旋转。使用电子低温显微镜,我们捕获了与正变构调节剂结合的 GluN1-GluN2B(GluN1-2B)NMDAR 的开放状态结构。这个过程旋转并弯曲了 GluN1 和 GluN2B 中的孔形成螺旋,从而改变了 TMD 通道的对称性从拟四面对称变为二面对称。GluN1-2B NMDAR 的 apo 和单配体结合状态的结构表明,单独结合甘氨酸或谷氨酸都会导致独特的 GluN1-2B 二聚体排列,但 LBD-TMD 连接体的张力不足以打开通道。这种机制框架确定了通道门控的关键决定因素和调节 NMDAR 活性的潜在药理学策略。