Suppr超能文献

2014 - 2023年中国上海浦东新区结核病的时空分析与季节性

Spatiotemporal analysis and seasonality of tuberculosis in Pudong New Area of Shanghai, China, 2014-2023.

作者信息

Pan Shuishui, Chen Lili, Xin Xin, Li Shihong, Zhang Yixing, Chen Yichen, Xiao Shaotan

机构信息

Tuberculosis, AIDS and STD Control Department, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China.

Third Branch Center, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China.

出版信息

BMC Infect Dis. 2024 Jul 31;24(1):761. doi: 10.1186/s12879-024-09645-x.

Abstract

BACKGROUND

Spatiotemporal analysis is a vital method that plays an indispensable role in monitoring epidemiological changes in diseases and identifying high-risk clusters. However, there is still a blank space in the spatial and temporal distribution of tuberculosis (TB) incidence rate in Pudong New Area, Shanghai. Consequently, it is crucial to comprehend the spatiotemporal distribution of TB in this district, this will guide the prevention and control of TB in the district.

METHODS

Our research used Geographic Information System (GIS) visualization, spatial autocorrelation analysis, and space-time scan analysis to analyze the TB incidence reported in the Pudong New Area of Shanghai from 2014 to 2023, and described the spatiotemporal clustering and seasonal hot spot distribution of TB incidence.

RESULTS

From 2014 to 2023, the incidence of TB in the Pudong New Area decreased, and the mortality was at a low level. The incidence of TB in different towns/streets has declined. The spatial autocorrelation analysis revealed that the incidence of TB was spatially clustered in 2014, 2016-2018, and 2022, with the highest clusters in 2014 and 2022. The high clustering area was mainly concentrated in the northeast. The space-time scan analysis indicated that the most likely cluster was located in 12 towns/streets, with a period of 2014-2018 and a radiation radius of 15.74 km. The heat map showed that there was a correlation between TB incidence and seasonal variations.

CONCLUSIONS

From 2014 to 2023, the incidence of TB in the Pudong New Area of Shanghai declined, but there were spatiotemporal clusters and seasonal correlations in the incidence area. Local departments should formulate corresponding intervention measures, especially in high-clustering areas, to achieve accurate prevention and control of TB within the most effective time and scope.

摘要

背景

时空分析是一种重要方法,在监测疾病的流行病学变化和识别高风险聚集区方面发挥着不可或缺的作用。然而,上海市浦东新区结核病发病率的时空分布仍存在空白。因此,了解该地区结核病的时空分布至关重要,这将指导该地区结核病的防控工作。

方法

本研究采用地理信息系统(GIS)可视化、空间自相关分析和时空扫描分析,对上海市浦东新区2014年至2023年报告的结核病发病率进行分析,并描述结核病发病率的时空聚集和季节性热点分布。

结果

2014年至2023年,浦东新区结核病发病率下降,死亡率处于较低水平。不同镇/街道的结核病发病率均有所下降。空间自相关分析显示,2014年、2016 - 2018年和2022年结核病发病率存在空间聚集,2014年和2022年聚集程度最高。高聚集区主要集中在东北部。时空扫描分析表明,最可能的聚集区位于12个镇/街道,时间为2014 - 2018年,辐射半径为15.74公里。热图显示结核病发病率与季节变化之间存在相关性。

结论

2014年至2023年,上海市浦东新区结核病发病率下降,但发病区域存在时空聚集和季节相关性。当地部门应制定相应的干预措施,特别是在高聚集区,以便在最有效的时间和范围内实现结核病的精准防控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c48d/11293123/7c4283ec73b8/12879_2024_9645_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验