Suppr超能文献

使用深度学习从超广角彩色眼底照片中自动早期检测急性视网膜坏死

Automated early detection of acute retinal necrosis from ultra-widefield color fundus photography using deep learning.

作者信息

Wang Yuqin, Yang Zijian, Guo Xingneng, Jin Wang, Lin Dan, Chen Anying, Zhou Meng

机构信息

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, 315042, China.

出版信息

Eye Vis (Lond). 2024 Aug 1;11(1):27. doi: 10.1186/s40662-024-00396-z.

Abstract

BACKGROUND

Acute retinal necrosis (ARN) is a relatively rare but highly damaging and potentially sight-threatening type of uveitis caused by infection with the human herpesvirus. Without timely diagnosis and appropriate treatment, ARN can lead to severe vision loss. We aimed to develop a deep learning framework to distinguish ARN from other types of intermediate, posterior, and panuveitis using ultra-widefield color fundus photography (UWFCFP).

METHODS

We conducted a two-center retrospective discovery and validation study to develop and validate a deep learning model called DeepDrARN for automatic uveitis detection and differentiation of ARN from other uveitis types using 11,508 UWFCFPs from 1,112 participants. Model performance was evaluated with the area under the receiver operating characteristic curve (AUROC), the area under the precision and recall curves (AUPR), sensitivity and specificity, and compared with seven ophthalmologists.

RESULTS

DeepDrARN for uveitis screening achieved an AUROC of 0.996 (95% CI: 0.994-0.999) in the internal validation cohort and demonstrated good generalizability with an AUROC of 0.973 (95% CI: 0.956-0.990) in the external validation cohort. DeepDrARN also demonstrated excellent predictive ability in distinguishing ARN from other types of uveitis with AUROCs of 0.960 (95% CI: 0.943-0.977) and 0.971 (95% CI: 0.956-0.986) in the internal and external validation cohorts. DeepDrARN was also tested in the differentiation of ARN, non-ARN uveitis (NAU) and normal subjects, with sensitivities of 88.9% and 78.7% and specificities of 93.8% and 89.1% in the internal and external validation cohorts, respectively. The performance of DeepDrARN is comparable to that of ophthalmologists and even exceeds the average accuracy of seven ophthalmologists, showing an improvement of 6.57% in uveitis screening and 11.14% in ARN identification.

CONCLUSIONS

Our study demonstrates the feasibility of deep learning algorithms in enabling early detection, reducing treatment delays, and improving outcomes for ARN patients.

摘要

背景

急性视网膜坏死(ARN)是一种相对罕见但具有高度破坏性且可能威胁视力的葡萄膜炎,由人类疱疹病毒感染引起。若不及时诊断和进行适当治疗,ARN可导致严重视力丧失。我们旨在开发一种深度学习框架,利用超广角彩色眼底照相术(UWFCFP)将ARN与其他类型的中间部、后部及全葡萄膜炎区分开来。

方法

我们进行了一项两中心回顾性发现与验证研究,以开发并验证一种名为DeepDrARN的深度学习模型,用于自动检测葡萄膜炎并区分ARN与其他葡萄膜炎类型,该研究使用了来自1112名参与者的11508张UWFCFP图像。通过受试者工作特征曲线下面积(AUROC)、精准度和召回率曲线下面积(AUPR)、敏感性和特异性对模型性能进行评估,并与七位眼科医生的表现进行比较。

结果

用于葡萄膜炎筛查的DeepDrARN在内部验证队列中的AUROC为0.996(95%置信区间:0.994 - 0.999),在外部验证队列中显示出良好的泛化能力,AUROC为0.973(95%置信区间:0.956 - 0.990)。DeepDrARN在区分ARN与其他类型葡萄膜炎方面也表现出出色的预测能力,在内部和外部验证队列中的AUROC分别为0.960(95%置信区间:0.943 - 0.977)和0.971(95%置信区间:0.95'6 - 0.986)。DeepDrARN还在ARN、非ARN葡萄膜炎(NAU)和正常受试者的区分中进行了测试,在内部和外部验证队列中的敏感性分别为88.9%和78.7%,特异性分别为93.8%和89.1%。DeepDrARN的性能与眼科医生相当,甚至超过了七位眼科医生的平均准确率,在葡萄膜炎筛查中提高了6.57%,在ARN识别中提高了11.14%。

结论

我们的研究证明了深度学习算法在实现ARN患者的早期检测、减少治疗延迟和改善治疗结果方面的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a283/11293155/96a0ab6419c8/40662_2024_396_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验