Tang Qiaosi, Ratnayake Ranjala, Seabra Gustavo, Jiang Zhe, Fang Ruogu, Cui Lina, Ding Yousong, Kahveci Tamer, Bian Jiang, Li Chenglong, Luesch Hendrik, Li Yanjun
ArXiv. 2024 Jan 15:arXiv:2312.07899v2.
Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high-throughput. These efforts have facilitated understanding of compound mechanism-of-action (MOA), drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering- and deep learning-based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field.
形态学分析是表型药物发现中的一种有价值的工具。高通量自动成像技术的出现使得能够在单细胞分辨率下捕捉细胞或生物体对扰动作出反应的广泛形态学特征。同时,机器学习和深度学习,特别是计算机视觉领域的重大进展,已在高通量分析大规模高内涵图像方面带来了实质性改进。这些努力促进了对化合物作用机制(MOA)的理解、药物再利用、扰动下细胞形态动力学的表征,并最终有助于新型疗法的开发。在本综述中,我们全面概述了形态学分析领域的最新进展。我们总结了图像分析工作流程,调查了包括基于特征工程和深度学习方法在内的广泛分析策略,并介绍了公开可用的基准数据集。我们特别强调深度学习在该流程中的应用,涵盖细胞分割、图像表示学习和多模态学习。此外,我们阐明了形态学分析在表型药物发现中的应用,并突出了该领域的潜在挑战和机遇。