Samaha Anna-Christina, Doumani Jacques, Kritzell T Elijah, Xu Hongjing, Baydin Andrey, Ajayan Pulickel M, Tahchi Mario El, Kono Junichiro
Laboratory of Biomaterials and Intelligent Materials, Department of Physics, Faculty of Sciences 2, Lebanese University, Jdeidet, 90656, Lebanon.
Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
Small. 2024 Aug 1:e2401151. doi: 10.1002/smll.202401151.
Graphene-based terahertz (THz) devices have emerged as promising platforms for a variety of applications, leveraging graphene's unique optoelectronic properties. This review explores recent advancements in utilizing graphene in THz technology, focusing on two main aspects: THz molecular sensing and THz wave modulation. In molecular sensing, the environment-sensitive THz transmission and emission properties of graphene are utilized for enabling molecular adsorption detection and biomolecular sensing. This capability holds significant potential, from the detection of pesticides to DNA at high sensitivity and selectivity. In THz wave modulation, crucial for next-generation wireless communication systems, graphene demonstrates remarkable potential in absorption modulation when gated. Novel device structures, spectroscopic systems, and metasurface architectures have enabled enhanced absorption and wave modulation. Furthermore, techniques such as spatial phase modulation and polarization manipulation have been explored. From sensing to communication, graphene-based THz devices present a wide array of opportunities for future research and development. Finally, advancements in sensing techniques not only enhance biomolecular analysis but also contribute to optimizing graphene's properties for communication by enabling efficient modulation of electromagnetic waves. Conversely, developments in communication strategies inform and enhance sensing capabilities, establishing a mutually beneficial relationship.
基于石墨烯的太赫兹(THz)器件凭借石墨烯独特的光电特性,已成为适用于各种应用的有前景的平台。本综述探讨了在太赫兹技术中利用石墨烯的最新进展,重点关注两个主要方面:太赫兹分子传感和太赫兹波调制。在分子传感中,利用石墨烯对环境敏感的太赫兹传输和发射特性来实现分子吸附检测和生物分子传感。这种能力具有巨大潜力,可实现从高灵敏度和高选择性地检测农药到DNA等各种物质。在太赫兹波调制方面,这对下一代无线通信系统至关重要,石墨烯在门控时展现出在吸收调制方面的显著潜力。新颖的器件结构、光谱系统和超表面架构实现了增强的吸收和波调制。此外,还探索了空间相位调制和偏振操纵等技术。从传感到通信,基于石墨烯的太赫兹器件为未来的研究和发展提供了广泛的机会。最后,传感技术的进步不仅增强了生物分子分析能力,还通过实现对电磁波的高效调制,有助于优化石墨烯在通信方面的性能。反之,通信策略的发展为传感能力提供了信息并增强了传感能力,建立了一种互利关系。