Suppr超能文献

人工智能驱动的毒理学形态分子特征发现

AI-driven Discovery of Morphomolecular Signatures in Toxicology.

作者信息

Jaume Guillaume, Peeters Thomas, Song Andrew H, Pettit Rowland, Williamson Drew F K, Oldenburg Lukas, Vaidya Anurag, de Brot Simone, Chen Richard J, Thiran Jean-Philippe, Le Long Phi, Gerber Georg, Mahmood Faisal

机构信息

Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.

Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

出版信息

bioRxiv. 2024 Jul 23:2024.07.19.604355. doi: 10.1101/2024.07.19.604355.

Abstract

Early identification of drug toxicity is essential yet challenging in drug development. At the preclinical stage, toxicity is assessed with histopathological examination of tissue sections from animal models to detect morphological lesions. To complement this analysis, toxicogenomics is increasingly employed to understand the mechanism of action of the compound and ultimately identify lesion-specific safety biomarkers for which assays can be designed. However, existing works that aim to identify morphological correlates of expression changes rely on qualitative or semi-quantitative morphological characterization and remain limited in scale or morphological diversity. Artificial intelligence (AI) offers a promising approach for quantitatively modeling this relationship at an unprecedented scale. Here, we introduce GEESE, an AI model designed to impute morphomolecular signatures in toxicology data. Our model was trained to predict 1,536 gene targets on a cohort of 8,231 hematoxylin and eosin-stained liver sections from across 127 preclinical toxicity studies. The model, evaluated on 2,002 tissue sections from 29 held-out studies, can yield pseudo-spatially resolved gene expression maps, which we correlate with six key drug-induced liver injuries (DILI). From the resulting 25 million lesion-expression pairs, we established quantitative relations between up and downregulated genes and lesions. Validation of these signatures against toxicogenomic databases, pathway enrichment analyses, and human hepatocyte cell lines asserted their relevance. Overall, our study introduces new methods for characterizing toxicity at an unprecedented scale and granularity, paving the way for AI-driven discovery of toxicity biomarkers.

摘要

在药物研发中,早期识别药物毒性至关重要但也具有挑战性。在临床前阶段,通过对动物模型组织切片进行组织病理学检查来评估毒性,以检测形态学病变。为补充这一分析,毒理基因组学越来越多地被用于了解化合物的作用机制,并最终识别可设计检测方法的病变特异性安全生物标志物。然而,现有旨在识别表达变化的形态学相关性的研究依赖于定性或半定量的形态学特征描述,且在规模或形态多样性方面仍存在局限性。人工智能(AI)为以前所未有的规模对这种关系进行定量建模提供了一种很有前景的方法。在此,我们介绍GEESE,一种旨在推断毒理学数据中形态分子特征的人工智能模型。我们的模型经过训练,可对来自127项临床前毒性研究的8231张苏木精和伊红染色的肝脏切片队列中的1536个基因靶点进行预测。该模型在来自29项保留研究的2002张组织切片上进行评估,能够生成伪空间分辨的基因表达图谱,我们将其与六种关键的药物性肝损伤(DILI)相关联。从由此产生的2500万个病变 - 表达对中,我们建立了上调和下调基因与病变之间的定量关系。针对毒理基因组数据库、通路富集分析和人肝细胞系对这些特征进行验证,证实了它们的相关性。总体而言,我们的研究以前所未有的规模和粒度引入了表征毒性的新方法,为人工智能驱动的毒性生物标志物发现铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验