Suppr超能文献

使用点云对三维多片细胞内结构进行可解释的表示学习。

Interpretable representation learning for 3D multi-piece intracellular structures using point clouds.

作者信息

Vasan Ritvik, Ferrante Alexandra J, Borensztejn Antoine, Frick Christopher L, Gaudreault Nathalie, Mogre Saurabh S, Morris Benjamin, Pires Guilherme G, Rafelski Susanne M, Theriot Julie A, Viana Matheus P

机构信息

Allen Institute for Cell Science, Seattle, WA, USA.

Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.

出版信息

bioRxiv. 2024 Aug 13:2024.07.25.605164. doi: 10.1101/2024.07.25.605164.

Abstract

A key challenge in understanding subcellular organization is quantifying interpretable measurements of intracellular structures with complex multi-piece morphologies in an objective, robust and generalizable manner. Here we introduce a morphology-appropriate representation learning framework that uses 3D rotation invariant autoencoders and point clouds. This framework is used to learn representations of complex multi-piece morphologies that are independent of orientation, compact, and easy to interpret. We apply our framework to intracellular structures with punctate morphologies (e.g. DNA replication foci) and polymorphic morphologies (e.g. nucleoli). We systematically compare our framework to image-based autoencoders across several intracellular structure datasets, including a synthetic dataset with pre-defined rules of organization. We explore the trade-offs in the performance of different models by performing multi-metric benchmarking across efficiency, generative capability, and representation expressivity metrics. We find that our framework, which embraces the underlying morphology of multi-piece structures, facilitates the unsupervised discovery of sub-clusters for each structure. We show how our approach can also be applied to phenotypic profiling using a dataset of nucleolar images following drug perturbations. We implement and provide all representation learning models using CytoDL, a python package for flexible and configurable deep learning experiments.

摘要

理解亚细胞组织的一个关键挑战是以客观、稳健且可推广的方式量化具有复杂多部件形态的细胞内结构的可解释测量值。在这里,我们引入了一个形态学适配的表示学习框架,该框架使用三维旋转不变自动编码器和点云。这个框架用于学习与方向无关、紧凑且易于解释的复杂多部件形态的表示。我们将我们的框架应用于具有点状形态(如DNA复制焦点)和多态形态(如核仁)的细胞内结构。我们在几个细胞内结构数据集上系统地将我们的框架与基于图像的自动编码器进行比较,包括一个具有预定义组织规则的合成数据集。我们通过在效率、生成能力和表示表达能力指标上进行多指标基准测试,探索不同模型性能之间的权衡。我们发现,我们的框架包含多部件结构的潜在形态,有助于对每个结构进行无监督的子聚类发现。我们展示了我们的方法如何也能应用于使用药物扰动后核仁图像数据集的表型分析。我们使用CytoDL实现并提供所有表示学习模型,CytoDL是一个用于灵活且可配置的深度学习实验的Python包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3fd/11331299/8f2e648665ab/nihpp-2024.07.25.605164v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验