Suppr超能文献

利用共轭微孔聚合物中吩嗪和二氢吩嗪的氧化还原动力学实现高效光催化整体合成过氧化氢

Leveraging phenazine and dihydrophenazine redox dynamics in conjugated microporous polymers for high-efficiency overall photosynthesis of hydrogen peroxide.

作者信息

Feng Shufan, Wang Lei, Tian Limei, Liu Ying, Hu Ke, Xu Hangxun, Wang Haifeng, Hua Jianli

机构信息

Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China

Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China

出版信息

Chem Sci. 2024 Jun 27;15(30):11972-11980. doi: 10.1039/d4sc02832e. eCollection 2024 Jul 31.

Abstract

Harnessing solar energy for hydrogen peroxide (HO) production from water and oxygen is crucial for sustainable solar fuel generation. Conjugated microporous polymers (CMPs), with their vast structural versatility and extended π-conjugation, are promising photocatalysts for solar-driven HO generation, though enhancing their efficiency is challenging. Inspired by the crucial role of phenazine derives in biological redox cycling and electron transfer processes, the redox-active phenazine moiety is rationally integrated into a CMP framework (TPE-PNZ). By leveraging the reversible redox dynamics between phenazine and dihydrophenazine, TPE-PNZ sets a new benchmark for HO production among CMP-based photocatalysts, reaching a production rate of 5142 μmol g h and a solar-to-chemical conversion efficiency of 0.58% without requiring sacrificial agents. This interconversion allows for the storage of photogenerated electrons by phenazine and subsequent conversion into dihydrophenazine, which then reduces O to HO while reverting to phenazine, markedly facilitating charge transfer and mitigating charge recombination. Experimental and computational investigations further reveal that this reversible process enhances O adsorption and reduction, significantly lowering the energy barrier towards HO formation. This study offers critical insights into designing advanced materials for sustainable energy research.

摘要

利用太阳能从水和氧气中生产过氧化氢(HO)对于可持续太阳能燃料的生产至关重要。共轭微孔聚合物(CMPs)具有广泛的结构多样性和扩展的π共轭,是用于太阳能驱动HO生成的有前途的光催化剂,尽管提高其效率具有挑战性。受吩嗪衍生物在生物氧化还原循环和电子转移过程中的关键作用启发,将具有氧化还原活性的吩嗪部分合理地整合到CMP框架(TPE-PNZ)中。通过利用吩嗪和二氢吩嗪之间的可逆氧化还原动力学,TPE-PNZ在基于CMP的光催化剂中为HO生产设定了新的基准,在不需要牺牲剂的情况下,达到了5142 μmol g h的生产率和0.58%的太阳能到化学能的转换效率。这种相互转化允许通过吩嗪存储光生电子,随后将其转化为二氢吩嗪,然后二氢吩嗪将O还原为HO,同时恢复为吩嗪,显著促进电荷转移并减轻电荷复合。实验和计算研究进一步表明,这种可逆过程增强了O的吸附和还原,显著降低了HO形成的能垒。这项研究为可持续能源研究中设计先进材料提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a35/11290433/215fd6d8edeb/d4sc02832e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验