Chen Yuzhong, Wu Zeng, Chen Zekun, Zhang Shuixin, Li Wenhao, Zhao Yan, Wang Yang, Liu Yunqi
Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
Chem Sci. 2024 Jun 18;15(30):11761-11774. doi: 10.1039/d4sc02794a. eCollection 2024 Jul 31.
Electron-deficient heteroarenes based on dithienopyrrolobenzothiadiazole (BTP) have been highly attractive due to their fascinating packing structures, broad absorption profiles, and promising applications in non-fullerene organic solar cells. However, the control of their crystal structures for superior charge transport still faces big challenges. Herein, a conformation engineering strategy is proposed to rationally manipulate the single crystal structure of BTP-series heteroarenes. The parent molecule BTPO-c has a 3D network crystal structure, which originates from its banana-shaped conformation. Subtracting one thiophene moiety from the central backbone leads to a looser brickwork crystal structure of the derivative BTPO-z because of its interrupted angular-shaped conformation. Further subtracting two thiophene moieties results in the derivative BTPO-l with a compact 2D-brickwork crystal structure due to its quasi-linear conformation with a unique dimer packing structure and short π-π stacking distance (3.30 Å). Further investigation of charge-transport properties single-crystal organic transistors demonstrates that the compact 2D-brickwork crystal structure of BTPO-l leads to an excellent electron mobility of 3.5 cm V s, much higher than that of BTPO-c with a 3D network (1.9 cm V s) and BTPO-z with a looser brickwork structure (0.6 cm V s). Notably, this study presents, for the first time, an elegant demonstration of the tunable single crystal structures of electron-deficient heteroarenes for efficient organic electronics.
基于二噻吩并吡咯并苯并噻二唑(BTP)的缺电子杂芳烃因其迷人的堆积结构、宽广的吸收光谱以及在非富勒烯有机太阳能电池中的潜在应用而备受关注。然而,控制其晶体结构以实现卓越的电荷传输仍面临巨大挑战。在此,我们提出一种构象工程策略,以合理调控BTP系列杂芳烃的单晶结构。母体分子BTPO-c具有三维网络晶体结构,这源于其香蕉形构象。从中心主链上减去一个噻吩部分会导致衍生物BTPO-z形成更松散的砌砖式晶体结构,这是由于其角形构象被打断。进一步减去两个噻吩部分会得到衍生物BTPO-l,它具有紧凑的二维砌砖式晶体结构,这归因于其准线性构象以及独特的二聚体堆积结构和较短的π-π堆积距离(3.30 Å)。对单晶有机晶体管的电荷传输特性进行的进一步研究表明,BTPO-l紧凑的二维砌砖式晶体结构导致其具有3.5 cm² V⁻¹ s⁻¹ 的优异电子迁移率,远高于具有三维网络结构的BTPO-c(1.9 cm² V⁻¹ s⁻¹)和具有较松散砌砖结构的BTPO-z(0.6 cm² V⁻¹ s⁻¹)。值得注意的是,本研究首次展示了缺电子杂芳烃的可调单晶结构在高效有机电子学中的精妙示例。