School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
Chem Soc Rev. 2024 Aug 27;53(17):8847-8877. doi: 10.1039/d4cs00636d.
Significant advances have been made in materials for biomedical applications, including tissue engineering, bioimaging, cancer treatment, In the past few decades, nanostructure-mediated therapeutic strategies have been developed to improve drug delivery, targeted therapy, and diagnosis, maximizing therapeutic effectiveness while reducing systemic toxicity and side effects by exploiting the complicated interactions between the materials and the cell and tissue microenvironments. This review briefly introduces the differences between the cells and tissues of tumour or normal cells. We summarize recent advances in tumour microenvironment-mediated therapeutic strategies using nanostructured materials. We then comprehensively discuss strategies for fabricating nanostructures with cancer cell-specific cytotoxicity by precisely controlling their composition, particle size, shape, structure, surface functionalization, and external energy stimulation. Finally, we present perspectives on the challenges and future opportunities of nanotechnology-based toxicity strategies in tumour therapy.
在生物医学应用材料方面取得了重大进展,包括组织工程、生物成像、癌症治疗等。在过去的几十年中,已经开发出了基于纳米结构的治疗策略,以改善药物输送、靶向治疗和诊断,通过利用材料与细胞和组织微环境之间的复杂相互作用,最大限度地提高治疗效果,同时降低全身毒性和副作用。本文简要介绍了肿瘤或正常细胞的细胞和组织之间的差异。我们总结了利用纳米结构材料介导的肿瘤微环境治疗策略的最新进展。然后,我们全面讨论了通过精确控制其组成、粒径、形状、结构、表面功能化和外部能量刺激来制备具有癌细胞特异性细胞毒性的纳米结构的策略。最后,我们对基于纳米技术的肿瘤治疗毒性策略的挑战和未来机遇提出了展望。