Reiser Alain, Lindén Marcus, Rohner Patrik, Marchand Adrien, Galinski Henning, Sologubenko Alla S, Wheeler Jeffrey M, Zenobi Renato, Poulikakos Dimos, Spolenak Ralph
Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093, Zürich, Switzerland.
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland.
Nat Commun. 2019 Apr 23;10(1):1853. doi: 10.1038/s41467-019-09827-1.
An extensive range of metals can be dissolved and re-deposited in liquid solvents using electrochemistry. We harness this concept for additive manufacturing, demonstrating the focused electrohydrodynamic ejection of metal ions dissolved from sacrificial anodes and their subsequent reduction to elemental metals on the substrate. This technique, termed electrohydrodynamic redox printing (EHD-RP), enables the direct, ink-free fabrication of polycrystalline multi-metal 3D structures without the need for post-print processing. On-the-fly switching and mixing of two metals printed from a single multichannel nozzle facilitates a chemical feature size of <400 nm with a spatial resolution of 250 nm at printing speeds of up to 10 voxels per second. As shown, the additive control of the chemical architecture of materials provided by EHD-RP unlocks the synthesis of 3D bi-metal structures with programmed local properties and opens new avenues for the direct fabrication of chemically architected materials and devices.
利用电化学原理,可在液体溶剂中溶解多种金属并使其重新沉积。我们将这一概念应用于增材制造,展示了从牺牲阳极溶解的金属离子的聚焦电流体动力喷射以及它们随后在基板上还原为元素金属的过程。这种技术被称为电流体动力氧化还原打印(EHD-RP),能够直接、无墨地制造多晶多金属3D结构,无需进行打印后处理。从单个多通道喷嘴打印两种金属时的即时切换和混合,在高达每秒10体素的打印速度下,可实现<400 nm的化学特征尺寸和250 nm的空间分辨率。如图所示,EHD-RP提供的对材料化学结构的添加剂控制开启了具有可编程局部特性的3D双金属结构的合成,并为直接制造具有化学结构的材料和器件开辟了新途径。