Suppr超能文献

养分和水分限制揭示了根际代谢组和微生物组之间联系的关键代谢物。

Nutrient and moisture limitations reveal keystone metabolites linking rhizosphere metabolomes and microbiomes.

机构信息

Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720.

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2303439121. doi: 10.1073/pnas.2303439121. Epub 2024 Aug 2.

Abstract

Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.

摘要

植物向根际环境中释放大量代谢物,以响应环境胁迫来塑造微生物群落的组成和活性。人们已经提出了根分泌物与根际微生物群落演替之间的联系,尤其是在环境胁迫条件下,但确凿的证据仍然很少。在这项研究中,我们调查了在养分有限、水分有限、氮(N)充足、磷(P)充足和 NP 充足条件下,能源作物柳枝稷在边缘土壤中生长时,根际化学、微生物组动态和非生物胁迫之间的关系。我们结合了 16S rRNA 扩增子测序和基于 LC-MS/MS 的代谢组学,将根际微生物群落和代谢物联系起来。我们确定了根际代谢物图谱对非生物胁迫的显著变化,并使用网络分析将其与微生物群落的变化联系起来。氮限制放大了根际中芳香酸、戊糖及其衍生物的丰度,它们的可用性增加与酸杆菌门、疣微菌门、浮霉菌门和α变形菌门的细菌类群的丰度有关。相反,氮处理条件增加了富含氮的根际化合物的可用性,这与放线菌的增殖相吻合。具有不同氮供应的处理在潜在关键代谢物的丰度上有很大差异;血清素和章鱼胺在氮充足的土壤中特别丰富,而绿原酸、肉桂酸和葡萄糖醛酸则在氮限制的土壤中富集。血清素是我们确定的与微生物分类群联系最多的关键代谢物,它显著影响了根际微生物的根结构和生长,突出了它塑造微生物群落和介导根际植物-微生物相互作用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/936e/11317588/38d4dfec55f7/pnas.2303439121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验