文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

植物驯化塑造根际微生物组组装和代谢功能。

Plant domestication shapes rhizosphere microbiome assembly and metabolic functions.

机构信息

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.

Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Xianyang, 712100, Shaanxi, China.

出版信息

Microbiome. 2023 Mar 31;11(1):70. doi: 10.1186/s40168-023-01513-1.


DOI:10.1186/s40168-023-01513-1
PMID:37004105
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10064753/
Abstract

BACKGROUND: The rhizosphere microbiome, which is shaped by host genotypes, root exudates, and plant domestication, is crucial for sustaining agricultural plant growth. Despite its importance, how plant domestication builds up specific rhizosphere microbiomes and metabolic functions, as well as the importance of these affected rhizobiomes and relevant root exudates in maintaining plant growth, is not well understood. Here, we firstly investigated the rhizosphere bacterial and fungal communities of domestication and wild accessions of tetraploid wheat using amplicon sequencing (16S and ITS) after 9 years of domestication process at the main production sites in China. We then explored the ecological roles of root exudation in shaping rhizosphere microbiome functions by integrating metagenomics and metabolic genomics approaches. Furthermore, we established evident linkages between root morphology traits and keystone taxa based on microbial culture and plant inoculation experiments. RESULTS: Our results suggested that plant rhizosphere microbiomes were co-shaped by both host genotypes and domestication status. The wheat genomes contributed more variation in the microbial diversity and composition of rhizosphere bacterial communities than fungal communities, whereas plant domestication status exerted much stronger influences on the fungal communities. In terms of microbial interkingdom association networks, domestication destabilized microbial network and depleted the abundance of keystone fungal taxa. Moreover, we found that domestication shifted the rhizosphere microbiome from slow growing and fungi dominated to fast growing and bacteria dominated, thereby resulting in a shift from fungi-dominated membership with enrichment of carbon fixation genes to bacteria-dominated membership with enrichment of carbon degradation genes. Metagenomics analyses further indicated that wild cultivars of wheat possess higher microbial function diversity than domesticated cultivars. Notably, we found that wild cultivar is able to harness rhizosphere microorganism carrying N transformation (i.e., nitrification, denitrification) and P mineralization pathway, whereas rhizobiomes carrying inorganic N fixation, organic N ammonification, and inorganic P solubilization genes are recruited by the releasing of root exudates from domesticated wheat. More importantly, our metabolite-wide association study indicated that the contrasting functional roles of root exudates and the harnessed keystone microbial taxa with different nutrient acquisition strategies jointly determined the aboveground plant phenotypes. Furthermore, we observed that although domesticated and wild wheats recruited distinct microbial taxa and relevant functions, domestication-induced recruitment of keystone taxa led to a consistent growth regulation of root regardless of wheat domestication status. CONCLUSIONS: Our results indicate that plant domestication profoundly influences rhizosphere microbiome assembly and metabolic functions and provide evidence that host plants are able to harness a differentiated ecological role of root-associated keystone microbiomes through the release of root exudates to sustain belowground multi-nutrient cycles and plant growth. These findings provide valuable insights into the mechanisms underlying plant-microbiome interactions and how to harness the rhizosphere microbiome for crop improvement in sustainable agriculture. Video Abstract.

摘要

背景:根际微生物组受宿主基因型、根分泌物和植物驯化的影响,对维持农业植物生长至关重要。尽管其重要性不言而喻,但植物驯化如何建立特定的根际微生物组和代谢功能,以及受驯化影响的根际微生物组和相关根分泌物在维持植物生长方面的重要性,仍未得到很好的理解。在这里,我们首先使用扩增子测序(16S 和 ITS),在我国主要生产区对经过 9 年驯化的四倍体小麦的驯化和野生品种的根际细菌和真菌群落进行了研究。然后,我们通过整合宏基因组学和代谢基因组学方法,探讨了根分泌物在塑造根际微生物组功能方面的生态作用。此外,我们还基于微生物培养和植物接种实验,建立了根形态特征与关键类群之间的明显联系。 结果:我们的结果表明,植物根际微生物组是由宿主基因型和驯化状态共同塑造的。小麦基因组对根际细菌群落的微生物多样性和组成的贡献大于真菌群落,而植物驯化状态对真菌群落的影响更大。在微生物种间关联网络方面,驯化会破坏微生物网络并耗尽关键真菌类群的丰度。此外,我们发现驯化使根际微生物组从生长缓慢且以真菌为主转变为生长迅速且以细菌为主,从而导致从以真菌为主的成员组成,富含固碳基因转变为以细菌为主的成员组成,富含碳降解基因。宏基因组学分析进一步表明,野生小麦品种具有更高的微生物功能多样性。值得注意的是,我们发现野生品种能够利用携带氮转化(即硝化、反硝化)和磷矿化途径的根际微生物,而携带无机氮固定、有机氮氨化和无机磷溶解基因的根际微生物则被驯化小麦释放的根分泌物招募。更重要的是,我们的代谢物广泛关联研究表明,根分泌物的不同功能作用以及具有不同养分获取策略的驯化根际关键微生物类群的利用共同决定了地上部植物表型。此外,我们观察到,尽管驯化和野生小麦招募了不同的微生物类群和相关功能,但驯化诱导的关键类群的招募导致根的生长调节一致,而不管小麦的驯化状态如何。 结论:我们的研究结果表明,植物驯化深刻影响根际微生物组的组装和代谢功能,并提供了证据表明,宿主植物能够通过释放根分泌物来利用与根相关的关键微生物组的分化生态作用,以维持地下多养分循环和植物生长。这些发现为植物-微生物相互作用的机制以及如何利用根际微生物组在可持续农业中改良作物提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/488a67edbb62/40168_2023_1513_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/27625f285a90/40168_2023_1513_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/066a8399cf99/40168_2023_1513_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/1e3a38ec9ab2/40168_2023_1513_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/d3709af0bbc6/40168_2023_1513_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/685f9fdf5357/40168_2023_1513_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/ff87b6666440/40168_2023_1513_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/488a67edbb62/40168_2023_1513_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/27625f285a90/40168_2023_1513_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/066a8399cf99/40168_2023_1513_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/1e3a38ec9ab2/40168_2023_1513_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/d3709af0bbc6/40168_2023_1513_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/685f9fdf5357/40168_2023_1513_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/ff87b6666440/40168_2023_1513_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c77/10064753/488a67edbb62/40168_2023_1513_Fig7_HTML.jpg

相似文献

[1]
Plant domestication shapes rhizosphere microbiome assembly and metabolic functions.

Microbiome. 2023-3-31

[2]
Host genotype-specific rhizosphere fungus enhances drought resistance in wheat.

Microbiome. 2024-3-4

[3]
Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat.

Sci Rep. 2020-7-22

[4]
Disease-induced changes in plant microbiome assembly and functional adaptation.

Microbiome. 2021-9-15

[5]
Ecological Processes of Bacterial and Fungal Communities Associated with Roots in Wetlands Were Distinct during Plant Development.

Microbiol Spectr. 2023-2-14

[6]
Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization.

Microbiome. 2019-10-22

[7]
Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome.

Microbiome. 2023-9-30

[8]
Plant developmental stage drives the differentiation in ecological role of the maize microbiome.

Microbiome. 2021-8-13

[9]
Association between host nitrogen absorption and root-associated microbial community in field-grown wheat.

Appl Microbiol Biotechnol. 2023-12

[10]
Cover crop root exudates impact soil microbiome functional trajectories in agricultural soils.

Microbiome. 2024-9-28

引用本文的文献

[1]
Organic fertilizer application rates affect rhizosphere microbial communities and yield optimization in potato ( L. V7).

Front Microbiol. 2025-8-7

[2]
Assessing the Divergent Soil Phosphorus Recovery Strategies in Domesticated and Wild Crops.

Plants (Basel). 2025-7-25

[3]
Alpine radish rhizosphere microbiome assembly and metabolic adaptation under PBAT/PLA humic acid biodegradable mulch films.

Front Microbiol. 2025-7-28

[4]
Genetic Diversification of Tomato and Agricultural Soil Management Shaped the Rhizospheric Microbiome of Tomato ().

Microorganisms. 2025-7-1

[5]
Adaptive and metabolic convergence in rhizosphere and gut microbiomes.

Microbiome. 2025-7-26

[6]
Arbuscular mycorrhizal fungi enhance soil nutrient cycling by regulating soil bacterial community structures in mango orchards with different soil fertility rates.

Front Microbiol. 2025-6-27

[7]
Blueprints for sustainable plant production through the utilization of crop wild relatives and their microbiomes.

Nat Commun. 2025-7-10

[8]
Soil properties and plant functional traits have different importance in shaping rhizosphere soil bacterial and fungal communities in a meadow steppe.

mSystems. 2025-7-8

[9]
Co-Inoculating B418 and T11W Reduced Infestation of Tomato Plants.

Microorganisms. 2025-6-9

[10]
Wild wisdom meets cultivation: comparative rhizomicrobiome analysis unveils the key role of Paraburkholderia in growth promotion and disease suppression in Coptis chinensis.

Microbiome. 2025-6-21

本文引用的文献

[1]
Potential of indigenous crop microbiomes for sustainable agriculture.

Nat Food. 2021-4

[2]
Nitrogen increases soil organic carbon accrual and alters its functionality.

Glob Chang Biol. 2023-4

[3]
Rewilding plant microbiomes.

Science. 2022-11-11

[4]
Defining Composition and Function of the Rhizosphere Microbiota of Barley Genotypes Exposed to Growth-Limiting Nitrogen Supplies.

mSystems. 2022-12-20

[5]
Back to our roots: exploring the role of root morphology as a mediator of beneficial plant-microbe interactions.

Environ Microbiol. 2022-8

[6]
May the dark be with roots: a perspective on how root illumination may bias in vitro research on plant-environment interactions.

New Phytol. 2022-3

[7]
Linking root exudation to belowground economic traits for resource acquisition.

New Phytol. 2022-2

[8]
Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems.

Glob Chang Biol. 2022-1

[9]
Disease-induced changes in plant microbiome assembly and functional adaptation.

Microbiome. 2021-9-15

[10]
Open challenges for microbial network construction and analysis.

ISME J. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索