Urfan Mohammad, Rajput Prakriti, Mahajan Palak, Sharma Shubham, Hakla Haroon Rashid, Kour Verasis, Khajuria Bhubneshwari, Chowdhary Rehana, Lehana Parveen Kumar, Karlupia Namrata, Abrol Pawanesh, Tran Lam Son Phan, Choudhary Sikander Pal
Crop Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India.
Department of Computer Science & Engineering, Central University of Jammu, Jammu 181143, India.
Research (Wash D C). 2024 Oct 4;7:0491. doi: 10.34133/research.0491. eCollection 2024.
Precise and timely detection of a crop's nutrient requirement will play a crucial role in assuring optimum plant growth and crop yield. The present study introduces a reliable deep learning platform called "Deep Learning-Crop Platform" (DL-CRoP) for the identification of some commercially grown plants and their nutrient requirements using leaf, stem, and root images using a convolutional neural network (CNN). It extracts intrinsic feature patterns through hierarchical mapping and provides remarkable outcomes in identification tasks. The DL-CRoP platform is trained on the plant image dataset, namely, Jammu University-Botany Image Database (JU-BID), available at https://github.com/urfanbutt. The findings demonstrate implementation of DL-CRoP-cases A (uses shoot images) and B (uses leaf images) for species identification for (tomato), (Vigna), and (maize), and cases C (uses leaf images) and D (uses root images) for diagnosis of nitrogen deficiency in maize. The platform achieved a higher rate of accuracy at 80-20, 70-30, and 60-40 splits for all the case studies, compared with established algorithms such as random forest, K-nearest neighbor, support vector machine, AdaBoost, and naïve Bayes. It provides a higher accuracy rate in classification parameters like recall, precision, and F1 score for cases A (90.45%), B (100%), and C (93.21), while a medium-level accuracy of 68.54% for case D. To further improve the accuracy of the platform in case study C, the CNN was modified including a multi-head attention (MHA) block. It resulted in the enhancement of the accuracy of classifying the nitrogen deficiency above 95%. The platform could play an important role in evaluating the health status of crop plants along with a role in precise identification of species. It may be used as a better module for precision crop cultivation under limited nutrient conditions.
精确及时地检测作物的养分需求对于确保植物最佳生长和作物产量至关重要。本研究引入了一个名为“深度学习 - 作物平台”(DL - CRoP)的可靠深度学习平台,用于使用卷积神经网络(CNN)通过叶、茎和根图像识别一些商业种植植物及其养分需求。它通过分层映射提取内在特征模式,并在识别任务中提供显著成果。DL - CRoP平台在植物图像数据集上进行训练,即查谟大学植物学图像数据库(JU - BID),可在https://github.com/urfanbutt获取。研究结果展示了DL - CRoP的案例A(使用地上部图像)和案例B(使用叶图像)用于番茄、豇豆和玉米的物种识别,以及案例C(使用叶图像)和案例D(使用根图像)用于玉米氮素缺乏诊断。与随机森林、K近邻、支持向量机、AdaBoost和朴素贝叶斯等既定算法相比,该平台在所有案例研究的80 - 20、70 - 30和60 - 40分割下均实现了更高的准确率。在召回率、精确率和F1分数等分类参数方面,案例A(90.45%)、案例B(100%)和案例C(93.21)提供了更高的准确率,而案例D的准确率为中等水平的68.54%。为了在案例研究C中进一步提高平台的准确率,对CNN进行了修改,包括添加多头注意力(MHA)模块。这使得氮素缺乏分类的准确率提高到95%以上。该平台在评估作物健康状况以及精确识别物种方面可以发挥重要作用。它可作为有限养分条件下精准作物栽培的更好模块。