Noisternig Stefan Manuel, Rentenberger Christian, Gammer Christoph, Karnthaler H Peter, Kotakoski Jani
University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria; Austrian Academy of Sciences, Erich Schmid Institute of Materials Science, Jahnstraße 12, 8700, Leoben, Austria.
University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria.
Ultramicroscopy. 2024 Nov;265:114019. doi: 10.1016/j.ultramic.2024.114019. Epub 2024 Jul 25.
Beside its main purpose as a high-end tool in material analysis reaching the atomic scale for structure, chemical and electronic properties, aberration-corrected scanning transmission electron microscopy (STEM) is increasingly used as a tool to manipulate materials down to that very same scale. In order to obtain exact and reproducible results, it is essential to consider the interaction processes and interaction ranges between the electron beam and the involved materials. Here, we show in situ that electron beam-induced etching in a low-pressure oxygen atmosphere can extend up to a distance of several nm away from the Ångström-size electron beam, usually used for probing the sample. This relatively long-range interaction is related to beam tails and inelastic scattering involved in the etching process. To suppress the influence of surface diffusion, we measure the etching effect indirectly on isolated nm-sized holes in a 2 nm thin amorphous carbon foil that is commonly used as sample support in STEM. During our experiments, the electron beam is placed inside the nanoholes so that most electrons cannot directly participate in the etching process. We characterize the etching process from measuring etching rates at multiple nanoholes with different distances between the hole edge and the electron beam.
除了作为一种高端工具用于材料分析以达到原子尺度的结构、化学和电子性质研究外,像差校正扫描透射电子显微镜(STEM)越来越多地被用作一种在同一尺度下对材料进行操控的工具。为了获得精确且可重复的结果,考虑电子束与相关材料之间的相互作用过程和相互作用范围至关重要。在此,我们通过原位实验表明,在低压氧气气氛中电子束诱导蚀刻可以延伸到距离通常用于探测样品的埃级尺寸电子束数纳米的距离。这种相对长程的相互作用与蚀刻过程中涉及的束尾和非弹性散射有关。为了抑制表面扩散的影响,我们在一个2纳米厚的非晶碳箔中对孤立的纳米尺寸孔洞间接测量蚀刻效果,该非晶碳箔通常用作STEM中的样品支撑。在我们的实验过程中,电子束放置在纳米孔洞内部,这样大多数电子无法直接参与蚀刻过程。我们通过测量多个纳米孔洞在孔洞边缘与电子束之间不同距离下的蚀刻速率来表征蚀刻过程。