Suppr超能文献

僵硬的细胞外基质通过多尺度 3D 基因组重排促使间充质干细胞向成骨分化。

Stiff extracellular matrix drives the differentiation of mesenchymal stem cells toward osteogenesis by the multiscale 3D genome reorganization.

机构信息

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.

Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.

出版信息

Biomaterials. 2025 Jan;312:122715. doi: 10.1016/j.biomaterials.2024.122715. Epub 2024 Jul 27.

Abstract

Extracellular matrix (ECM) stiffness is a major driver of stem cell fate. However, the involvement of the three-dimensional (3D) genomic reorganization in response to ECM stiffness remains unclear. Here, we generated comprehensive 3D chromatin landscapes of mesenchymal stem cells (MSCs) exposed to various ECM stiffness. We found that there were more long-range chromatin interactions, but less compartment A in MSCs cultured on stiff ECM than those cultured on soft ECM. However, the switch from compartment B in MSCs cultured on soft ECM to compartment A in MSCs cultured on stiff ECM included genes encoding proteins primarily enriched in cytoskeleton organization. At the topologically associating domains (TADs) level, stiff ECM tends to have merged TADs on soft ECM. These merged TADs on stiff ECM include upregulated genes encoding proteins enriched in osteogenesis, such as SP1, ETS1, and DCHS1, which were validated by quantitative real-time polymerase chain reaction and found to be consistent with the increase of alkaline phosphatase staining. Knockdown of SP1 or ETS1 led to the downregulation of osteogenic marker genes, including COL1A1, RUNX2, ALP, and OCN in MSCs cultured on stiff ECM. Our study provides an important insight into the stiff ECM-mediated promotion of MSC differentiation towards osteogenesis, emphasizing the influence of mechanical cues on the reorganization of 3D genome architecture and stem cell fate.

摘要

细胞外基质(ECM)的硬度是干细胞命运的主要驱动因素。然而,对于响应 ECM 硬度的三维(3D)基因组重排的参与仍不清楚。在这里,我们生成了暴露于各种 ECM 硬度的间充质干细胞(MSCs)的综合 3D 染色质图谱。我们发现,在硬 ECM 上培养的 MSC 中存在更多的长程染色质相互作用,但 A 区较少,而在软 ECM 上培养的 MSC 中则较少。然而,从软 ECM 上培养的 MSC 中的 B 区转换为硬 ECM 上培养的 MSC 中的 A 区,包括编码主要富含细胞骨架组织的蛋白质的基因。在拓扑关联域(TADs)水平上,硬 ECM 倾向于在软 ECM 上具有合并的 TADs。这些硬 ECM 上的合并 TADs 包括上调的基因,编码富含成骨作用的蛋白质,如 SP1、ETS1 和 DCHS1,这通过定量实时聚合酶链反应得到验证,并发现与碱性磷酸酶染色的增加一致。SP1 或 ETS1 的敲低导致硬 ECM 上培养的 MSC 中成骨标记基因的下调,包括 COL1A1、RUNX2、ALP 和 OCN。我们的研究提供了一个重要的见解,即硬 ECM 介导的促进 MSC 向成骨分化,强调了机械线索对 3D 基因组结构和干细胞命运的重排的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验