Proctor J E, Trachenko Kostya
Materials and Physics Research Group, University of Salford, Manchester M5 4WT, United Kingdom.
School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
Rep Prog Phys. 2024 Aug 22;87(9). doi: 10.1088/1361-6633/ad6a80.
Physics-based first-principles pressure-volume-temperature equations of state (EOS) exist for solids and gases but not for liquids due to the long-standing fundamental problems involved in liquid theory. Current EOS models that are applicable to liquids and supercritical fluids at liquid-like density under conditions relevant to planetary interiors and industrial processes are complex empirical models with many physically meaningless adjustable parameters. Here, we develop a generally applicable physics-based (GAP) EOS for liquids including supercritical fluids at liquid-like density. The GAP equation is explicit in the internal energy, and hence links the most fundamental macroscopic static property of fluids, the pressure-volume-temperature EOS, to their key microscopic property: the molecular hopping frequency or liquid relaxation time, from which the internal energy can be obtained. We test our GAP equation against available experimental data in several different ways and find good agreement. Our GAP equation, unavoidably and similarly to solid EOS, contains a semi-empirical term giving the energy of the static sample as a function of volume only (EST(V)). Our testing includes studies along isochores, in order to examine the validity of the GAP equation independently of the validity of any function we may choose to utilize forEST(V). The only other adjustable parameter in the equation is the Grüneisen parameter for the fluid. We observe that the GAP equation is similar to the Mie-Grüneisen solid EOS in a wide range of the liquid phase diagram. This similarity is ultimately related to the condensed state of these two phases. On the other hand, the differences between the GAP equation and EOS for gases are fundamental. Finally, we identify the key gaps in the experimental data that need to be filled in to proceed further with the liquid EOS.
基于物理的第一性原理压力-体积-温度状态方程(EOS)适用于固体和气体,但由于液体理论中存在的长期基本问题,不适用于液体。当前适用于与行星内部和工业过程相关条件下类液体密度的液体和超临界流体的EOS模型是复杂的经验模型,具有许多无物理意义的可调参数。在此,我们开发了一种适用于包括类液体密度超临界流体在内的液体的通用基于物理的(GAP)EOS。GAP方程在内能方面是显式的,因此将流体最基本的宏观静态性质,即压力-体积-温度EOS,与它们的关键微观性质:分子跳跃频率或液体弛豫时间联系起来,由此可以获得内能。我们以几种不同方式将我们的GAP方程与现有实验数据进行对比,发现吻合度良好。与固体EOS不可避免且类似地,我们的GAP方程包含一个半经验项,该项给出仅作为体积函数的静态样本能量(EST(V))。我们的测试包括沿等容线的研究,以便独立于我们可能选择用于EST(V)的任何函数的有效性来检验GAP方程的有效性。该方程中唯一的其他可调参数是流体的格林爱森参数。我们观察到GAP方程在液相图的广泛范围内与米-格林爱森固体EOS相似。这种相似性最终与这两个相的凝聚态有关。另一方面,GAP方程与气体EOS之间的差异是根本性的。最后,我们确定了实验数据中需要填补的关键空白,以便进一步推进液体EOS的研究。