Suppr超能文献

一个用于自动合并和预处理多个 EEG 存储库的库。

: a library for automatic merging and preprocessing of multiple EEG repositories.

机构信息

Department of Neuroscience, University of Padua, Padua 35128, Italy.

Padua Neuroscience Center, Padua 35128, Italy.

出版信息

J Neural Eng. 2024 Aug 20;21(4). doi: 10.1088/1741-2552/ad6a8c.

Abstract

This study aims to address the challenges associated with data-driven electroencephalography (EEG) data analysis by introducing a standardised library called. This library efficiently processes and merges heterogeneous EEG datasets from different sources into a common standard template. The goal of this work is to create an environment that allows to preprocess public datasets in order to provide data for the effective training of deep learning (DL) architectures.The library can handle both Brain Imaging Data Structure (BIDS) and non-BIDS datasets, allowing the user to easily preprocess multiple public datasets. It unifies the EEG recordings acquired with different settings by defining a common pipeline and a specified channel template. An array of visualisation functions is provided inside the library, together with a user-friendly graphical user interface to assist non-expert users throughout the workflow.BIDSAlign enables the effective use of public EEG datasets, providing valuable medical insights, even for non-experts in the field. Results from applying the library to datasets from OpenNeuro demonstrate its ability to extract significant medical knowledge through an end-to-end workflow, facilitating group analysis, visual comparison and statistical testing.BIDSAlign solves the lack of large EEG datasets by aligning multiple datasets to a standard template. This unlocks the potential of public EEG data for training DL models. It paves the way to promising contributions based on DL to clinical and non-clinical EEG research, offering insights that can inform neurological disease diagnosis and treatment strategies.

摘要

本研究旨在通过引入一个名为 的标准化库来解决与数据驱动的脑电图 (EEG) 数据分析相关的挑战。该库能够高效地将来自不同来源的异构 EEG 数据集处理并合并到一个通用标准模板中。这项工作的目标是创建一个环境,允许预处理公共数据集,为深度学习 (DL) 架构的有效训练提供数据。该库可以处理 Brain Imaging Data Structure (BIDS) 和非 BIDS 数据集,允许用户轻松预处理多个公共数据集。它通过定义一个通用管道和指定的通道模板来统一不同设置下采集的 EEG 记录。库内还提供了一系列可视化功能,以及一个用户友好的图形用户界面,以帮助非专业用户完成整个工作流程。BIDSAlign 使公共 EEG 数据集能够得到有效利用,即使是非该领域的专家也能从中获得有价值的医学见解。该库在 OpenNeuro 数据集上的应用结果表明,它能够通过端到端工作流程提取重要的医学知识,从而促进组分析、可视化比较和统计测试。BIDSAlign 通过将多个数据集对齐到标准模板来解决缺乏大型 EEG 数据集的问题。这为使用公共 EEG 数据训练 DL 模型释放了潜力。它为基于 DL 的临床和非临床 EEG 研究铺平了道路,提供了可以为神经疾病诊断和治疗策略提供信息的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验