School of Computer Science and Technology, Beijing Jiaotong University, Beijing, 100044, China.
Department of Ophthalmology, the Affiliated hospital of Shandong Second Medical University, Weifang, 261000, China.
Sci Data. 2024 Aug 2;11(1):838. doi: 10.1038/s41597-024-03665-7.
Branch retinal vein occlusion (BRVO) is the most prevalent retinal vascular disease that constitutes a threat to vision due to increased venous pressure caused by venous effluent in the space, leading to impaired visual function. Optical Coherence Tomography Angiography (OCTA) is an innovative non-invasive technique that offers high-resolution three-dimensional structures of retinal blood vessels. Most publicly available datasets are collected from single visits with different patients, encompassing various eye diseases for distinct tasks and areas. Moreover, due to the intricate nature of eye structure, professional labeling not only relies on the expertise of doctors but also demands considerable time and effort. Therefore, we have developed a BRVO-focused dataset named Soul (Source of ocular vascular) and propose a human machine collaborative annotation framework (HMCAF) using scrambled retinal blood vessels data. Soul is categorized into 6 subsets based on injection frequency and follow-up duration. The dataset comprises original images, corresponding blood vessel labels, and clinical text information sheets which can be effectively utilized when combined with machine learning.
视网膜分支静脉阻塞(BRVO)是最常见的视网膜血管疾病,由于空间内静脉流出物导致静脉压升高,从而损害视觉功能,对视力构成威胁。光学相干断层扫描血管造影术(OCTA)是一种创新的非侵入性技术,可提供视网膜血管的高分辨率三维结构。大多数公开可用的数据集都是从不同患者的单次就诊中收集的,涵盖了不同的眼部疾病和不同的任务和区域。此外,由于眼睛结构的复杂性,专业标注不仅依赖于医生的专业知识,还需要相当多的时间和精力。因此,我们开发了一个专注于 BRVO 的数据集,名为 Soul(眼部血管源),并提出了一种使用视网膜血管混乱数据的人机协作标注框架(HMCAF)。Soul 根据注射频率和随访时间分为 6 个子集。该数据集包含原始图像、相应的血管标签和临床文本信息表,与机器学习结合使用时非常有效。