Rotunno Giulia, Salvi Massimo, Deinsberger Julia, Krainz Lisa, Weber Benedikt, Sinz Christoph, Kittler Harald, Schmetterer Leopold, Drexler Wolfgang, Liu Mengyang, Meiburger Kristen M
PolitoBIOMed Lab, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy.
Department of Dermatology, Medical University of Vienna, Vienna, Austria.
Sci Data. 2025 Aug 23;12(1):1473. doi: 10.1038/s41597-025-05763-6.
Optical coherence tomography angiography (OCTA) has emerged as a promising tool for non-invasive vascular imaging in dermatology. However, the field lacks standardized methods for processing and analyzing these complex images, as well as sufficient annotated datasets for developing automated analysis tools. We present DERMA-OCTA, the first open-access dermatological OCTA dataset, comprising 330 volumetric scans from 74 subjects with various skin conditions. The dataset contains the original 2D and 3D OCTA acquisitions, as well as versions processed with five different preprocessing methods, and the reference 2D and 3D segmentations. For each version, segmentation labels are provided, generated using the U-Net architecture as 2D and 3D segmentation approaches. By providing high-resolution, annotated OCTA data across a range of skin pathologies, this dataset offers a valuable resource for training deep learning models, benchmarking segmentation algorithms, and facilitating research into non-invasive skin imaging. The DERMA-OCTA dataset is freely downloadable.
光学相干断层扫描血管造影(OCTA)已成为皮肤科无创血管成像的一种有前景的工具。然而,该领域缺乏处理和分析这些复杂图像的标准化方法,以及用于开发自动分析工具的足够注释数据集。我们展示了DERMA - OCTA,这是首个开放获取的皮肤科OCTA数据集,包含来自74名患有各种皮肤疾病的受试者的330次容积扫描。该数据集包含原始的2D和3D OCTA采集数据,以及用五种不同预处理方法处理后的版本,还有参考的2D和3D分割。对于每个版本,都提供了使用U - Net架构作为2D和3D分割方法生成的分割标签。通过提供一系列皮肤病理学的高分辨率、带注释的OCTA数据,该数据集为训练深度学习模型、对分割算法进行基准测试以及促进无创皮肤成像研究提供了宝贵资源。DERMA - OCTA数据集可免费下载。