Suppr超能文献

建立并评估用于预测脑小血管病患者认知障碍的临床预测模型。

Establishment and evaluation of a clinical prediction model for cognitive impairment in patients with cerebral small vessel disease.

机构信息

Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.

Department of Neurology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.

出版信息

BMC Neurosci. 2024 Aug 2;25(1):35. doi: 10.1186/s12868-024-00883-y.

Abstract

BACKGROUND

There are currently no effective prediction methods for evaluating the occurrence of cognitive impairment in patients with cerebral small vessel disease (CSVD).

AIMS

To investigate the risk factors for cognitive dysfunction in patients with CSVD and to construct a risk prediction model.

METHODS

A retrospective study was conducted on 227 patients with CSVD. All patients were assessed by brain magnetic resonance imaging (MRI), and the Montreal Cognitive Assessment (MoCA) was used to assess cognitive status. In addition, the patient's medical records were also recorded. The clinical data were divided into a normal cognitive function group and a cognitive impairment group. A MoCA score < 26 (an additional 1 point for education < 12 years) is defined as cognitive dysfunction.

RESULTS

A total of 227 patients (mean age 66.7 ± 6.99 years) with CSVD were included in this study, of whom 68.7% were male and 100 patients (44.1%) developed cognitive impairment. Age (OR = 1.070; 95% CI = 1.015 ~ 1.128, p < 0.05), hypertension (OR = 2.863; 95% CI = 1.438 ~ 5.699, p < 0.05), homocysteine(HCY) (OR = 1.065; 95% CI = 1.005 ~ 1.127, p < 0.05), lacunar infarct score(Lac_score) (OR = 2.732; 95% CI = 1.094 ~ 6.825, P < 0.05), and CSVD total burden (CSVD_score) (OR = 3.823; 95% CI = 1.496 ~ 9.768, P < 0.05) were found to be independent risk factors for cognitive decline in the present study. The above 5 variables were used to construct a nomogram, and the model was internally validated by using bootstrapping with a C-index of 0.839. The external model validation C-index was 0.867.

CONCLUSIONS

The nomogram model based on brain MR images and clinical data helps in individualizing the probability of cognitive impairment progression in patients with CSVD.

摘要

背景

目前尚无有效的预测方法来评估脑小血管病(CSVD)患者认知障碍的发生。

目的

探讨 CSVD 患者认知功能障碍的危险因素,并构建风险预测模型。

方法

对 227 例 CSVD 患者进行回顾性研究。所有患者均行颅脑磁共振成像(MRI)检查,采用蒙特利尔认知评估量表(MoCA)评估认知状态。同时记录患者的病历资料。将临床资料分为认知功能正常组和认知功能障碍组。MoCA 评分<26 分(教育年限<12 年加 1 分)定义为认知功能障碍。

结果

本研究共纳入 227 例(平均年龄 66.7±6.99 岁)CSVD 患者,其中男性 68.7%,100 例(44.1%)发生认知功能障碍。年龄(OR=1.070;95%CI=1.0151.128,p<0.05)、高血压(OR=2.863;95%CI=1.4385.699,p<0.05)、同型半胱氨酸(HCY)(OR=1.065;95%CI=1.0051.127,p<0.05)、腔隙性梗死评分(Lac_score)(OR=2.732;95%CI=1.0946.825,P<0.05)和 CSVD 总负荷(CSVD_score)(OR=3.823;95%CI=1.496~9.768,P<0.05)是本研究认知下降的独立危险因素。以上 5 个变量用于构建列线图,模型通过 bootstrap 进行内部验证,C 指数为 0.839。外部模型验证的 C 指数为 0.867。

结论

基于脑 MRI 图像和临床数据的列线图模型有助于个体化预测 CSVD 患者认知障碍的进展概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff9d/11295716/b284a8078579/12868_2024_883_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验