State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
Mol Plant. 2024 Sep 2;17(9):1423-1438. doi: 10.1016/j.molp.2024.07.015. Epub 2024 Aug 7.
Understanding how maize (Zea mays) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite extensive utilization of the genome-wide association study (GWAS) approach for exploring favorable natural alleles associated with maize cold tolerance, few studies have successfully identified candidate genes that contribute to maize cold tolerance. In this study, we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on variations in the relative injured area of maize true leaves during cold stress-a trait very closely correlated with maize cold tolerance. We identified HSF21, which encodes a B-class heat shock transcription factor (HSF) that positively regulates cold tolerance at both the seedling and germination stages. Natural variations in the promoter of the cold-tolerant HSF21 allele led to increased HSF21 expression under cold stress by inhibiting binding of the basic leucine zipper bZIP68 transcription factor, a negative regulator of cold tolerance. By integrating transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we revealed the function of HSF21 in regulating lipid metabolism homeostasis to modulate cold tolerance in maize. In addition, we found that HSF21 confers maize cold tolerance without incurring yield penalties. Collectively, this study establishes HSF21 as a key regulator that enhances cold tolerance in maize, providing valuable genetic resources for breeding of cold-tolerant maize varieties.
了解玉米(Zea mays)如何应对冷应激对于促进耐寒品种的选育计划至关重要。尽管广泛利用全基因组关联研究(GWAS)方法来探索与玉米耐寒性相关的有利自然等位基因,但很少有研究成功鉴定出有助于玉米耐寒性的候选基因。在这项研究中,我们使用了来自不同种质资源的多样化的自交系玉米群体进行 GWAS,研究了冷胁迫下玉米真叶相对受伤面积的变化,这一性状与玉米耐寒性密切相关。我们鉴定到 HSF21,它编码一个 B 类热休克转录因子(HSF),在幼苗和萌发阶段正向调节耐寒性。冷耐性 HSF21 等位基因启动子的自然变异通过抑制作为冷耐性负调节剂的碱性亮氨酸拉链 bZIP68 转录因子的结合,导致冷胁迫下 HSF21 的表达增加。通过整合转录组深度测序、DNA 亲和纯化测序和靶向脂质组学分析,我们揭示了 HSF21 在调节脂质代谢平衡以调节玉米耐寒性方面的功能。此外,我们发现 HSF21 赋予玉米耐寒性而不会导致产量损失。总之,这项研究确立了 HSF21 作为增强玉米耐寒性的关键调节剂,为培育耐寒玉米品种提供了有价值的遗传资源。