Suppr超能文献

一线抗 PD-1 免疫治疗后不可切除 IV 期黑色素瘤患者生存预测列线图:一项多中心国际研究。

Nomogram for predicting survival after first-line anti-PD-1-based immunotherapy in unresectable stage IV melanoma: a multicenter international study.

机构信息

Center for Dermato-oncology, Department of Dermatology, Eberhard Karls University of Tübingen, Tübingen; Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Tübingen.

Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls University of Tübingen, Tübingen.

出版信息

ESMO Open. 2024 Aug;9(8):103661. doi: 10.1016/j.esmoop.2024.103661. Epub 2024 Aug 2.

Abstract

BACKGROUND

The introduction of anti-programmed cell death protein 1 (PD-1) immunotherapy has revolutionized the treatment landscape for melanoma, enhancing both response rates and survival outcomes in patients with advanced stages of the disease. Despite these remarkable advances, a noteworthy subset of patients (40%-60%) does not derive advantage from this therapeutic approach. This study aims to identify key predictive factors and create a user-friendly predictive nomogram for stage IV melanoma patients receiving first-line anti-PD-1-based immunotherapy, improving treatment decisions.

MATERIALS AND METHODS

In this retrospective study, we included patients with unresectable stage IV melanoma who received first-line treatment with either anti-PD-1 monotherapy or anti-PD-1 plus anti-cytotoxic T-lymphocyte associated protein 4 between 2014 and 2018. We documented clinicopathological features and blood markers upon therapy initiation. By employing the random survival forest model and backward variable selection of the Cox model, we identified variables associated with progression-free survival (PFS) after the first-line anti-PD-1-based treatment. We developed and validated a predictive nomogram for PFS utilizing the identified variables. We assessed calibration and discrimination performance metrics as part of the evaluation process.

RESULTS

The study involved 719 patients, divided into a training cohort of 405 (56%) patients and a validation cohort of 314 (44%) patients. We combined findings from the random survival forest and the Cox model to create a nomogram that incorporates the following factors: lactate dehydrogenase (LDH), S100, melanoma subtype, neutrophil-to-lymphocyte ratio (NLR), body mass index, type of immune checkpoint inhibitor, and presence of liver or brain metastasis. The resultant model had a C-index of 0.67 in the training cohort and 0.66 in the validation cohort. Performance remained in different patient subgroups. Calibration analysis revealed a favorable correlation between predicted and actual PFS rates.

CONCLUSIONS

We developed and validated a predictive nomogram for long-term PFS in patients with unresectable stage IV melanoma undergoing first-line anti-PD-1-based immunotherapy.

摘要

背景

抗程序性细胞死亡蛋白 1(PD-1)免疫疗法的引入彻底改变了黑色素瘤的治疗格局,提高了晚期疾病患者的反应率和生存结果。尽管取得了这些显著进展,但相当一部分患者(40%-60%)并未从中受益。本研究旨在确定关键的预测因素,并为接受一线抗 PD-1 为基础的免疫治疗的 IV 期黑色素瘤患者创建一个易于使用的预测列线图,以改善治疗决策。

材料和方法

在这项回顾性研究中,我们纳入了 2014 年至 2018 年间接受一线抗 PD-1 单药或抗 PD-1 联合抗细胞毒性 T 淋巴细胞相关蛋白 4 治疗的不可切除 IV 期黑色素瘤患者。我们记录了治疗开始时的临床病理特征和血液标志物。通过随机生存森林模型和 Cox 模型的向后变量选择,我们确定了与一线抗 PD-1 为基础治疗后无进展生存(PFS)相关的变量。我们利用确定的变量开发并验证了用于 PFS 的预测列线图。我们评估了校准和区分性能指标作为评估过程的一部分。

结果

研究共纳入 719 例患者,分为训练队列 405 例(56%)和验证队列 314 例(44%)。我们结合随机生存森林和 Cox 模型的结果,创建了一个包含以下因素的列线图:乳酸脱氢酶(LDH)、S100、黑色素瘤亚型、中性粒细胞与淋巴细胞比值(NLR)、体重指数、免疫检查点抑制剂类型以及肝或脑转移的存在。该模型在训练队列中的 C 指数为 0.67,在验证队列中的 C 指数为 0.66。在不同的患者亚组中,该模型的性能仍然保持不变。校准分析显示预测和实际 PFS 率之间存在良好的相关性。

结论

我们为接受一线抗 PD-1 为基础的免疫治疗的不可切除 IV 期黑色素瘤患者开发并验证了用于长期 PFS 的预测列线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecd8/11345525/ea57b190ee5e/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验