Suppr超能文献

位移和功能超声(fUS)成像在小鼠中引导聚焦超声(FUS)神经调节中的应用。

Displacement and functional ultrasound (fUS) imaging of displacement-guided focused ultrasound (FUS) neuromodulation in mice.

机构信息

Department of Biomedical Engineering, Columbia University.

Department of Biomedical Engineering, Columbia University; Department of Radiology, Columbia University.

出版信息

Neuroimage. 2024 Sep;298:120768. doi: 10.1016/j.neuroimage.2024.120768. Epub 2024 Aug 2.

Abstract

Focused ultrasound (FUS) stimulation is a promising neuromodulation technique with the merits of non-invasiveness, high spatial resolution, and deep penetration depth. However, simultaneous imaging of FUS-induced brain tissue displacement and the subsequent effect of FUS stimulation on brain hemodynamics has proven challenging thus far. In addition, earlier studies lack in situ confirmation of targeting except for the magnetic resonance imaging-guided FUS system-based studies. The purpose of this study is 1) to introduce a fully ultrasonic approach to in situ target, modulate neuronal activity, and monitor the resultant neuromodulation effect by respectively leveraging displacement imaging, FUS, and functional ultrasound (fUS) imaging, and 2) to investigate FUS-evoked cerebral blood volume (CBV) response and the relationship between CBV and displacement. We performed displacement imaging on craniotomized mice to confirm the in situ targeting for neuromodulation site. We recorded hemodynamic responses evoked by FUS while fUS imaging revealed an ipsilateral CBV increase that peaks at 4 s post-FUS. We report a stronger hemodynamic activation in the subcortical region than cortical, showing good agreement with a brain elasticity map that can also be obtained using a similar methodology. We observed dose-dependent CBV responses with peak CBV, activated area, and correlation coefficient increasing with the ultrasonic dose. Furthermore, by mapping displacement and hemodynamic activation, we found that displacement colocalized and linearly correlated with CBV increase. The findings presented herein demonstrated that FUS evokes ipsilateral hemodynamic activation in cortical and subcortical depths while the evoked hemodynamic responses colocalize and correlate with FUS-induced displacement. We anticipate that our findings will help consolidate accurate targeting as well as shedding light on one of the mechanisms behind FUS modulation, i.e., how FUS mechanically displaces brain tissue affecting cerebral hemodynamics and thereby its associated connectivity.

摘要

聚焦超声(FUS)刺激是一种很有前途的神经调节技术,具有非侵入性、高空间分辨率和深穿透深度的优点。然而,迄今为止,同时成像 FUS 诱导的脑组织位移和 FUS 刺激对脑血流动力学的后续影响一直具有挑战性。此外,早期的研究除了基于磁共振成像引导的 FUS 系统的研究外,缺乏对靶点的原位确认。本研究的目的是 1)介绍一种完全超声方法,通过分别利用位移成像、FUS 和功能超声(fUS)成像原位靶向、调节神经元活性和监测由此产生的神经调节效果,以及 2)研究 FUS 诱发的脑血容量(CBV)反应和 CBV 与位移之间的关系。我们对开颅小鼠进行了位移成像,以确认神经调节部位的原位靶向。我们记录了 FUS 诱发的血流动力学反应,而 fUS 成像显示同侧 CBV 增加,在 FUS 后 4 秒达到峰值。我们报告了亚皮质区域比皮质区域更强的血流动力学激活,与使用类似方法也可以获得的脑弹性图具有很好的一致性。我们观察到剂量依赖性的 CBV 反应,峰值 CBV、激活面积和相关系数随着超声剂量的增加而增加。此外,通过映射位移和血流动力学激活,我们发现位移与 CBV 增加共定位且呈线性相关。本文的研究结果表明,FUS 可在皮质和皮质下深度诱发同侧血流动力学激活,而诱发的血流动力学反应与 FUS 诱导的位移共定位且相关。我们预计,我们的研究结果将有助于巩固准确的靶向,并阐明 FUS 调节的机制之一,即 FUS 如何机械地移位脑组织,影响脑血流动力学及其相关连接。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验