Riechers Birte, Das Amlan, Dufresne Eric, Derlet Peter M, Maaß Robert
Federal Institute of Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany.
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Nat Commun. 2024 Aug 3;15(1):6595. doi: 10.1038/s41467-024-50758-3.
Glassy solids evolve towards lower-energy structural states by physical aging. This can be characterized by structural relaxation times, the assessment of which is essential for understanding the glass' time-dependent property changes. Conducted over short times, a continuous increase of relaxation times with time is seen, suggesting a time-dependent dissipative transport mechanism. By focusing on micro-structural rearrangements at the atomic-scale, we demonstrate the emergence of sub-diffusive anomalous transport and therefore temporal fractional diffusion in a metallic glass, which we track via coherent x-ray scattering conducted over more than 300,000 s. At the longest probed decorrelation times, a transition from classical stretched exponential to a power-law behavior occurs, which in concert with atomistic simulations reveals collective and intermittent atomic motion. Our observations give a physical basis for classical stretched exponential relaxation behavior, uncover a new power-law governed collective transport regime for metallic glasses at long and practically relevant time-scales, and demonstrate a rich and highly non-monotonous aging response in a glassy solid, thereby challenging the common framework of homogeneous aging and atomic scale diffusion.
玻璃态固体通过物理老化向能量更低的结构状态演化。这可以用结构弛豫时间来表征,对其进行评估对于理解玻璃随时间变化的性能变化至关重要。在短时间内进行测量时,可以看到弛豫时间随时间持续增加,这表明存在一种与时间相关的耗散输运机制。通过关注原子尺度的微观结构重排,我们证明了亚扩散反常输运以及因此在金属玻璃中出现的时间分数扩散,我们通过超过300000秒的相干X射线散射对其进行追踪。在最长的探测去相关时间下,会发生从经典拉伸指数行为到幂律行为的转变,这与原子模拟一起揭示了集体和间歇性的原子运动。我们的观察结果为经典拉伸指数弛豫行为提供了物理基础,在长且实际相关的时间尺度上揭示了金属玻璃中一种由幂律支配的新的集体输运机制,并证明了玻璃态固体中丰富且高度非单调的老化响应,从而挑战了均匀老化和原子尺度扩散的常见框架。