1] WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan [2].
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Nat Commun. 2014;5:3238. doi: 10.1038/ncomms4238.
Johari-Goldstein or β relaxation, persisting down to glassy state from a supercooled liquid, is a universal phenomenon of glassy dynamics. Nevertheless, the underlying micromechanisms leading to the relaxation are still in debate despite great efforts devoted to this problem for decades. Here we report experimental evidence on the structural origins of Johari-Goldstein relaxation in an ultra-quenched metallic glass. The measured activation energy of the relaxation (~26 times of the product of gas constant and glass transition temperature) is consistent with the dynamic characteristics of Johari-Goldstein relaxation. Synchrotron X-ray investigations demonstrate that the relaxation originates from short-range collective rearrangements of large solvent atoms, which can be realized by local cooperative bonding switch. Our observations provide experimental insights into the atomic mechanisms of Johari-Goldstein relaxation and will be helpful in understanding the low-temperature dynamics and properties of metallic glasses.
约哈里-戈尔德斯坦或β弛豫,从过冷液体持续到玻璃态,是玻璃动力学的普遍现象。尽管几十年来人们为此问题付出了巨大努力,但导致弛豫的潜在微观机制仍存在争议。在这里,我们报告了在一种超急冷金属玻璃中约哈里-戈尔德斯坦弛豫的结构起源的实验证据。弛豫的测量激活能(约为气体常数和玻璃化转变温度的乘积的 26 倍)与约哈里-戈尔德斯坦弛豫的动力学特征一致。同步加速器 X 射线研究表明,弛豫源于溶剂原子的短程集体重排,这可以通过局部协同键合开关来实现。我们的观察结果为约哈里-戈尔德斯坦弛豫的原子机制提供了实验见解,并有助于理解金属玻璃的低温动力学和性质。