Suppr超能文献

利用每小时降雨数据集预测不同尺度流域的洪水水位:一种基于大量降雨特征增强的机器学习方法。

Predicting flood stages in watersheds with different scales using hourly rainfall dataset: A high-volume rainfall features empowered machine learning approach.

作者信息

Qiao Lei, Livsey Daniel, Wise Jarrett, Kadavy Kem, Hunt Sherry, Wagner Kevin

机构信息

Oklahoma Water Resources Center, Oklahoma State University, Stillwater, OK 74078, USA.

Agroclimate and Hydraulics Research Unit, Agriculture Research Unit, U.S. Department of Agriculture, Stillwater, OK 74075, USA.

出版信息

Sci Total Environ. 2024 Nov 10;950:175231. doi: 10.1016/j.scitotenv.2024.175231. Epub 2024 Aug 3.

Abstract

Accurate prediction of instantaneous high lake water levels and flood flows (flood stages) from micro-catchments to big river basins are critical for flood forecasting. Lake Carl Blackwell, a small-watershed reservoir in the south-central USA, served as a primary case study due to its rich historical dataset. Bearing knowledge that both current and previous rainfall contributes to the reservoirs' water body, a series of hourly rainfall features were created to maximize predicting power, which include total rainfall amounts in the current hour, the past 2 h, 3 h, …, 600 h in addition to previous-day lake levels. Notedly, the rainfall features are the accumulated rainfall amounts from present to previous hours rather than the rainfall amount in any specific hour. Random Forest Regression (RFR) was used to score the features' importance and predict the flood stages along with Neural Network - Multi-layer Perceptron Regression (NN-MLP), Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), and the ordinary multi-variant linear regression (MLR) together with dimension reduced linear models of Principal Component Regression (PCR) and Partial Least Square Regression (PLSR). The prediction accuracy for the lake flood stages can be as high as 0.95 in R, 0.11 ft. in mean absolute error (MAE), and 0.21 ft. in root mean square error (RMSE) for the testing dataset by the RFR (NN-MLP performed equally well), with small accuracy decreases by the other two non-linear algorithms of XGBoost and SVR. The linear regressions with dimension reductions had the lowest accuracy. Furthermore, our approach demonstrated high accuracy and broad applicability for surface runoff and streamflow predictions across three different-sized watersheds from micro-catchment to big river basins in the region, with increases of predicting power from earlier rainfall for larger watersheds and vice versa.

摘要

从微型集水区到大型河流流域准确预测瞬时高水位和洪水流量(洪水阶段)对于洪水预报至关重要。卡尔·布莱克韦尔湖是美国中南部的一个小流域水库,因其丰富的历史数据集而成为主要案例研究对象。考虑到当前和先前的降雨都会对水库水体产生影响,我们创建了一系列每小时降雨特征,以最大化预测能力,这些特征包括当前小时、过去2小时、3小时、……、600小时的总降雨量以及前一天的湖泊水位。值得注意的是,降雨特征是从当前到先前小时的累计降雨量,而不是任何特定小时的降雨量。随机森林回归(RFR)用于评估特征的重要性并预测洪水阶段,同时还有神经网络 - 多层感知器回归(NN-MLP)、支持向量回归(SVR)、极端梯度提升(XGBoost)以及普通多元线性回归(MLR),以及主成分回归(PCR)和偏最小二乘回归(PLSR)的降维线性模型。对于测试数据集,RFR对湖泊洪水阶段的预测准确率在R中可达0.95,平均绝对误差(MAE)为0.11英尺,均方根误差(RMSE)为0.21英尺(NN-MLP表现同样出色),而XGBoost和SVR这两种非线性算法的预测准确率略有下降。降维线性回归的准确率最低。此外,我们的方法在该地区从微型集水区到大型河流流域的三个不同规模流域的地表径流和河川径流预测中显示出高精度和广泛适用性,对于较大流域,早期降雨的预测能力增强,反之亦然。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验