Suppr超能文献

利用氧化锌纳米颗粒和银掺杂氧化锌纳米复合材料的绿色合成制备高性能非对称超级电容器

Green Synthesis of ZnO Nanoparticles and Ag-Doped ZnO Nanocomposite Utilizing for High-Performance Asymmetric Supercapacitors.

作者信息

Raza Azam, Sayeed Kaifee, Naaz Aeiman, Muaz Mohammad, Islam Sk Najrul, Rahaman Sabiar, Sama Farasha, Pandey Kavita, Ahmad Absar

机构信息

Interdisciplinary Nanotechnology Centre, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.

Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bengaluru 562162, India.

出版信息

ACS Omega. 2024 Jul 16;9(30):32444-32454. doi: 10.1021/acsomega.3c10060. eCollection 2024 Jul 30.

Abstract

This study provides a comprehensive analysis of a biofabricated nanomaterial derived from root extract, evaluating its structural, morphological, and optical properties for use in asymmetric supercapacitors. The nanomaterial comprises pristine ZnO nanoparticles (ZnO NPs) and a 1% Ag-doped ZnO nanocomposite (Ag@ZnO NC), synthesized through a green-assisted sol-gel autocombustion method. Employing techniques such as X-ray diffraction, ultraviolet-visible near-infrared, scanning electron microscopy-energy-dispersive X-rayspectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy, the study confirms a hexagonal wurtzite structure and nanocrystallites with spherical and hexagonal shapes (30 nm). Optical analysis reveals a red shift in the band gap with Ag doping, indicating improved conductivity. The material shows potential applications in solar cells, optoelectronics, spintronics, wastewater treatment, and high-performance asymmetric supercapacitors. Raman spectra validate the wurtzite phase and identify intrinsic defects. Electrochemical tests demonstrate remarkable supercapacitive behavior with a 94% capacitance retention after 10,000 cycles, highlighting its promise as advanced asymmetric supercapacitors.

摘要

本研究对一种源自根提取物的生物制造纳米材料进行了全面分析,评估了其用于不对称超级电容器的结构、形态和光学性质。该纳米材料包括通过绿色辅助溶胶 - 凝胶自燃烧法合成的原始氧化锌纳米颗粒(ZnO NPs)和1%银掺杂的氧化锌纳米复合材料(Ag@ZnO NC)。通过X射线衍射、紫外 - 可见近红外、扫描电子显微镜 - 能量色散X射线光谱、傅里叶变换红外光谱、拉曼光谱和透射电子显微镜等技术,该研究证实了其具有六方纤锌矿结构以及球形和六边形形状(30纳米)的纳米微晶。光学分析表明,银掺杂使带隙发生红移,表明导电性得到改善。该材料在太阳能电池、光电子学、自旋电子学、废水处理和高性能不对称超级电容器方面显示出潜在应用。拉曼光谱验证了纤锌矿相并识别出固有缺陷。电化学测试表明该材料具有显著的超级电容行为,在10000次循环后电容保持率为94%,突出了其作为先进不对称超级电容器的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8146/11292842/adfa1129f7d8/ao3c10060_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验