Nepal Subigya, Pillai Arvind, Wang Weichen, Griffin Tess, Collins Amanda C, Heinz Michael, Lekkas Damien, Mirjafari Shayan, Nemesure Matthew, Price George, Jacobson Nicholas C, Campbell Andrew T
Dartmouth College, Hanover, New Hampshire, USA.
Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024. doi: 10.1145/3613904.3642680. Epub 2024 May 11.
MoodCapture presents a novel approach that assesses depression based on images automatically captured from the front-facing camera of smartphones as people go about their daily lives. We collect over 125,000 photos in the wild from N=177 participants diagnosed with major depressive disorder for 90 days. Images are captured naturalistically while participants respond to the PHQ-8 depression survey question: . Our analysis explores important image attributes, such as angle, dominant colors, location, objects, and lighting. We show that a random forest trained with face landmarks can classify samples as depressed or non-depressed and predict raw PHQ-8 scores effectively. Our post-hoc analysis provides several insights through an ablation study, feature importance analysis, and bias assessment. Importantly, we evaluate user concerns about using MoodCapture to detect depression based on sharing photos, providing critical insights into privacy concerns that inform the future design of in-the-wild image-based mental health assessment tools.
情绪捕捉提出了一种新颖的方法,该方法基于人们在日常生活中从智能手机前置摄像头自动捕捉的图像来评估抑郁症。我们从177名被诊断患有重度抑郁症90天的参与者那里在自然环境中收集了超过125,000张照片。当参与者回答PHQ - 8抑郁症调查问卷问题时,图像以自然的方式被捕捉。我们的分析探索了重要的图像属性,如角度、主导颜色、位置、物体和光照。我们表明,使用面部标志训练的随机森林可以将样本分类为抑郁或非抑郁,并有效地预测原始PHQ - 8分数。我们的事后分析通过消融研究、特征重要性分析和偏差评估提供了一些见解。重要的是,我们评估了用户对基于分享照片使用情绪捕捉来检测抑郁症的担忧,为隐私问题提供了关键见解,这些见解为未来基于自然环境图像的心理健康评估工具的设计提供了参考。