Suppr超能文献

情绪捕捉:利用自然场景下的智能手机图像进行抑郁症检测

MoodCapture: Depression Detection Using In-the-Wild Smartphone Images.

作者信息

Nepal Subigya, Pillai Arvind, Wang Weichen, Griffin Tess, Collins Amanda C, Heinz Michael, Lekkas Damien, Mirjafari Shayan, Nemesure Matthew, Price George, Jacobson Nicholas C, Campbell Andrew T

机构信息

Dartmouth College, Hanover, New Hampshire, USA.

出版信息

Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024. doi: 10.1145/3613904.3642680. Epub 2024 May 11.

Abstract

MoodCapture presents a novel approach that assesses depression based on images automatically captured from the front-facing camera of smartphones as people go about their daily lives. We collect over 125,000 photos in the wild from N=177 participants diagnosed with major depressive disorder for 90 days. Images are captured naturalistically while participants respond to the PHQ-8 depression survey question: . Our analysis explores important image attributes, such as angle, dominant colors, location, objects, and lighting. We show that a random forest trained with face landmarks can classify samples as depressed or non-depressed and predict raw PHQ-8 scores effectively. Our post-hoc analysis provides several insights through an ablation study, feature importance analysis, and bias assessment. Importantly, we evaluate user concerns about using MoodCapture to detect depression based on sharing photos, providing critical insights into privacy concerns that inform the future design of in-the-wild image-based mental health assessment tools.

摘要

情绪捕捉提出了一种新颖的方法,该方法基于人们在日常生活中从智能手机前置摄像头自动捕捉的图像来评估抑郁症。我们从177名被诊断患有重度抑郁症90天的参与者那里在自然环境中收集了超过125,000张照片。当参与者回答PHQ - 8抑郁症调查问卷问题时,图像以自然的方式被捕捉。我们的分析探索了重要的图像属性,如角度、主导颜色、位置、物体和光照。我们表明,使用面部标志训练的随机森林可以将样本分类为抑郁或非抑郁,并有效地预测原始PHQ - 8分数。我们的事后分析通过消融研究、特征重要性分析和偏差评估提供了一些见解。重要的是,我们评估了用户对基于分享照片使用情绪捕捉来检测抑郁症的担忧,为隐私问题提供了关键见解,这些见解为未来基于自然环境图像的心理健康评估工具的设计提供了参考。

相似文献

1
MoodCapture: Depression Detection Using In-the-Wild Smartphone Images.情绪捕捉:利用自然场景下的智能手机图像进行抑郁症检测
Proc SIGCHI Conf Hum Factor Comput Syst. 2024 May;2024. doi: 10.1145/3613904.3642680. Epub 2024 May 11.

本文引用的文献

3
Evaluating the utility of daily speech assessments for monitoring depression symptoms.评估日常言语评估在监测抑郁症状方面的效用。
Digit Health. 2023 Jun 12;9:20552076231180523. doi: 10.1177/20552076231180523. eCollection 2023 Jan-Dec.
5
Emotion detection for supporting depression screening.用于支持抑郁症筛查的情绪检测
Multimed Tools Appl. 2023;82(9):12771-12795. doi: 10.1007/s11042-022-14290-0. Epub 2022 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验