Freyria Nastasia J, Góngora Esteban, Greer Charles W, Whyte Lyle G
Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
Energy, Mining and Environment, Research Centre, National Research Council Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada.
ISME Commun. 2024 Jul 16;4(1):ycae100. doi: 10.1093/ismeco/ycae100. eCollection 2024 Jan.
The accelerated decline in Arctic sea-ice cover and duration is enabling the opening of Arctic marine passages and improving access to natural resources. The increasing accessibility to navigation and resource exploration and production brings risks of accidental hydrocarbon releases into Arctic waters, posing a major threat to Arctic marine ecosystems where oil may persist for many years, especially in beach sediment. The composition and response of the microbial community to oil contamination on Arctic beaches remain poorly understood. To address this, we analyzed microbial community structure and identified hydrocarbon degradation genes among the Northwest Passage intertidal beach sediments and shoreline seawater from five high Arctic beaches. Our results from 16S/18S rRNA genes, long-read metagenomes, and metagenome-assembled genomes reveal the composition and metabolic capabilities of the hydrocarbon microbial degrader community, as well as tight cross-habitat and cross-kingdom interactions dominated by lineages that are common and often dominant in the polar coastal habitat, but distinct from petroleum hydrocarbon-contaminated sites. In the polar beach sediment habitats, sp. and sp. were major potential hydrocarbon-degraders, and our metagenomes revealed a small proportion of microalgae and algal viruses possessing key hydrocarbon biodegradative genes. This research demonstrates that Arctic beach sediment and marine microbial communities possess the ability for hydrocarbon natural attenuation. The findings provide new insights into the viral and microalgal communities possessing hydrocarbon degradation genes and might represent an important contribution to the removal of hydrocarbons under harsh environmental conditions in a pristine, cold, and oil-free environment that is threatened by oil spills.
北极海冰覆盖面积和持续时间的加速减少,使得北极海上航道得以开通,并改善了自然资源的获取。航行以及资源勘探与生产的可达性不断提高,带来了碳氢化合物意外泄漏到北极水域的风险,对北极海洋生态系统构成了重大威胁,在北极海洋生态系统中,石油可能会持续存在多年,尤其是在海滩沉积物中。人们对北极海滩上微生物群落的组成以及对油污的反应仍知之甚少。为了解决这个问题,我们分析了微生物群落结构,并在五条北冰洋高纬度海滩的西北航道潮间带海滩沉积物和海岸线海水中鉴定了碳氢化合物降解基因。我们通过16S/18S rRNA基因、长读长宏基因组和宏基因组组装基因组得到的结果,揭示了碳氢化合物微生物降解群落的组成和代谢能力,以及紧密的跨生境和跨界相互作用,这些相互作用由在极地沿海生境中常见且通常占主导地位、但与受石油碳氢化合物污染的地点不同的谱系主导。在极地海滩沉积物生境中, 属和 属是主要的潜在碳氢化合物降解者,我们的宏基因组显示,一小部分微藻和藻类病毒拥有关键的碳氢化合物生物降解基因。这项研究表明,北极海滩沉积物和海洋微生物群落具有碳氢化合物自然衰减的能力。这些发现为拥有碳氢化合物降解基因的病毒和微藻群落提供了新的见解,可能代表了在一个受到漏油威胁的原始、寒冷且无油的环境中,在恶劣环境条件下对碳氢化合物去除的重要贡献。