Suppr超能文献

基于混合分子力学/广义玻恩表面积法与机器学习方法的蛋白质-配体复合物结合自由能预测

Prediction of Binding Free Energy of Protein-Ligand Complexes with a Hybrid Molecular Mechanics/Generalized Born Surface Area and Machine Learning Method.

作者信息

Dong Lina, Qu Xiaoyang, Zhao Yuan, Wang Binju

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China.

State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China.

出版信息

ACS Omega. 2021 Nov 21;6(48):32938-32947. doi: 10.1021/acsomega.1c04996. eCollection 2021 Dec 7.

Abstract

Accurate prediction of protein-ligand binding free energies is important in enzyme engineering and drug discovery. The molecular mechanics/generalized Born surface area (MM/GBSA) approach is widely used to estimate ligand-binding affinities, but its performance heavily relies on the accuracy of its energy components. A hybrid strategy combining MM/GBSA and machine learning (ML) has been developed to predict the binding free energies of protein-ligand systems. Based on the MM/GBSA energy terms and several features associated with protein-ligand interactions, our ML-based scoring function, GXLE, shows much better performance than MM/GBSA without entropy. In particular, the good transferability of the GXLE model is highlighted by its good performance in ranking power for prediction of the binding affinity of different ligands for either the docked structures or crystal structures. The GXLE scoring function and its code are freely available and can be used to correct the binding free energies computed by MM/GBSA.

摘要

准确预测蛋白质 - 配体结合自由能在酶工程和药物发现中至关重要。分子力学/广义玻恩表面积(MM/GBSA)方法被广泛用于估计配体结合亲和力,但其性能在很大程度上依赖于其能量成分的准确性。一种结合MM/GBSA和机器学习(ML)的混合策略已被开发出来用于预测蛋白质 - 配体系统的结合自由能。基于MM/GBSA能量项以及与蛋白质 - 配体相互作用相关的几个特征,我们基于机器学习的评分函数GXLE,在没有熵的情况下,表现比MM/GBSA好得多。特别是,GXLE模型的良好可转移性通过其在对对接结构或晶体结构的不同配体结合亲和力预测的排名能力方面的良好表现而得到突出体现。GXLE评分函数及其代码可免费获取,可用于校正由MM/GBSA计算的结合自由能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/075c/8655939/407749099eae/ao1c04996_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验