Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA.
Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China.
Biom J. 2024 Sep;66(6):e202300185. doi: 10.1002/bimj.202300185.
There has been growing research interest in developing methodology to evaluate the health care providers' performance with respect to a patient outcome. Random and fixed effects models are traditionally used for such a purpose. We propose a new method, using a fusion penalty to cluster health care providers based on quasi-likelihood. Without any priori knowledge of grouping information, our method provides a desirable data-driven approach for automatically clustering health care providers into different groups based on their performance. Further, the quasi-likelihood is more flexible and robust than the regular likelihood in that no distributional assumption is needed. An efficient alternating direction method of multipliers algorithm is developed to implement the proposed method. We show that the proposed method enjoys the oracle properties; namely, it performs as well as if the true group structure were known in advance. The consistency and asymptotic normality of the estimators are established. Simulation studies and analysis of the national kidney transplant registry data demonstrate the utility and validity of our method.
人们对于开发一种方法来评估医疗服务提供者在患者治疗结果方面的表现越来越感兴趣。传统上,随机效应模型和固定效应模型被用于此类目的。我们提出了一种新方法,使用融合惩罚根据拟似然对医疗服务提供者进行聚类。我们的方法无需任何分组信息的先验知识,为根据医疗服务提供者的表现自动将其聚类到不同的组中提供了一种理想的数据驱动方法。此外,拟似然比常规似然更灵活和稳健,因为它不需要任何分布假设。我们开发了一种有效的交替方向乘子算法来实现所提出的方法。我们表明,所提出的方法具有最优性;也就是说,如果事先知道真实的分组结构,它的性能就和知道分组结构一样好。我们还建立了估计量的一致性和渐近正态性。模拟研究和国家肾脏移植登记数据的分析证明了我们方法的实用性和有效性。