Suppr超能文献

基于拟似然融合惩罚的医疗服务提供商聚类

Health Care Provider Clustering Using Fusion Penalty in Quasi-Likelihood.

机构信息

Division of Biostatistics, Washington University in St. Louis, St. Louis, Missouri, USA.

Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China.

出版信息

Biom J. 2024 Sep;66(6):e202300185. doi: 10.1002/bimj.202300185.

Abstract

There has been growing research interest in developing methodology to evaluate the health care providers' performance with respect to a patient outcome. Random and fixed effects models are traditionally used for such a purpose. We propose a new method, using a fusion penalty to cluster health care providers based on quasi-likelihood. Without any priori knowledge of grouping information, our method provides a desirable data-driven approach for automatically clustering health care providers into different groups based on their performance. Further, the quasi-likelihood is more flexible and robust than the regular likelihood in that no distributional assumption is needed. An efficient alternating direction method of multipliers algorithm is developed to implement the proposed method. We show that the proposed method enjoys the oracle properties; namely, it performs as well as if the true group structure were known in advance. The consistency and asymptotic normality of the estimators are established. Simulation studies and analysis of the national kidney transplant registry data demonstrate the utility and validity of our method.

摘要

人们对于开发一种方法来评估医疗服务提供者在患者治疗结果方面的表现越来越感兴趣。传统上,随机效应模型和固定效应模型被用于此类目的。我们提出了一种新方法,使用融合惩罚根据拟似然对医疗服务提供者进行聚类。我们的方法无需任何分组信息的先验知识,为根据医疗服务提供者的表现自动将其聚类到不同的组中提供了一种理想的数据驱动方法。此外,拟似然比常规似然更灵活和稳健,因为它不需要任何分布假设。我们开发了一种有效的交替方向乘子算法来实现所提出的方法。我们表明,所提出的方法具有最优性;也就是说,如果事先知道真实的分组结构,它的性能就和知道分组结构一样好。我们还建立了估计量的一致性和渐近正态性。模拟研究和国家肾脏移植登记数据的分析证明了我们方法的实用性和有效性。

相似文献

1
Health Care Provider Clustering Using Fusion Penalty in Quasi-Likelihood.
Biom J. 2024 Sep;66(6):e202300185. doi: 10.1002/bimj.202300185.
3
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Interventions for providers to promote a patient-centred approach in clinical consultations.
Cochrane Database Syst Rev. 2012 Dec 12;12(12):CD003267. doi: 10.1002/14651858.CD003267.pub2.
7
Decision coaching for people making healthcare decisions.
Cochrane Database Syst Rev. 2021 Nov 8;11(11):CD013385. doi: 10.1002/14651858.CD013385.pub2.
8
Incentives for preventing smoking in children and adolescents.
Cochrane Database Syst Rev. 2017 Jun 6;6(6):CD008645. doi: 10.1002/14651858.CD008645.pub3.
10
Interventions for central serous chorioretinopathy: a network meta-analysis.
Cochrane Database Syst Rev. 2025 Jun 16;6(6):CD011841. doi: 10.1002/14651858.CD011841.pub3.

引用本文的文献

1
High-dimensional mediation analysis for longitudinal mediators and survival outcomes.
Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf206.
2
Regression Trees With Fused Leaves.
Stat Med. 2024 Dec 30;43(30):5872-5884. doi: 10.1002/sim.10272. Epub 2024 Nov 20.

本文引用的文献

1
A flexible quasi-likelihood model for microbiome abundance count data.
Stat Med. 2023 Nov 10;42(25):4632-4643. doi: 10.1002/sim.9880. Epub 2023 Aug 22.
2
Healthcare center clustering for Cox's proportional hazards model by fusion penalty.
Stat Med. 2023 Sep 10;42(20):3685-3698. doi: 10.1002/sim.9825. Epub 2023 Jun 14.
4
Capturing heterogeneity in repeated measures data by fusion penalty.
Stat Med. 2021 Apr 15;40(8):1901-1916. doi: 10.1002/sim.8878. Epub 2021 Jan 31.
5
Histopathological imaging-based cancer heterogeneity analysis via penalized fusion with model averaging.
Biometrics. 2021 Dec;77(4):1397-1408. doi: 10.1111/biom.13357. Epub 2020 Aug 29.
6
Profiling dialysis facilities for adverse recurrent events.
Stat Med. 2020 Apr 30;39(9):1374-1389. doi: 10.1002/sim.8482. Epub 2020 Jan 30.
7
Exploration of Heterogeneous Treatment Effects via Concave Fusion.
Int J Biostat. 2019 Sep 20;16(1):ijb-2018-0026. doi: 10.1515/ijb-2018-0026.
10
Measuring transplant center performance: The goals are not controversial but the methods and consequences can be.
Curr Transplant Rep. 2017 Mar;4(1):52-58. doi: 10.1007/s40472-017-0138-9. Epub 2017 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验