文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

计算机断层扫描成像引导的微环境响应性 Ir@WO 双催化纳米反应器用于选择性放射增敏。

Computed Tomography Imaging Guided Microenvironment-Responsive Ir@WO Dual-Catalytic Nanoreactor for Selective Radiosensitization.

机构信息

Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150001, China.

School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, 150001, China.

出版信息

Adv Sci (Weinh). 2024 Oct;11(38):e2405192. doi: 10.1002/advs.202405192. Epub 2024 Aug 5.


DOI:10.1002/advs.202405192
PMID:39102342
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11481196/
Abstract

Radiotherapy (RT) is often administered, either alone or in combination with other therapies, for most malignancies. However, the degree of tumor oxygenation, damage to adjacent healthy tissues, and inaccurate guidance remain issues that result in discontinuation or failure of RT. Here, a multifunctional therapeutic platform based on Ir@WO is developed which simultaneously addresses these critical issues above for precision radiosensitization. Ir@WO nanoreactors exhibit strong absorption of X-ray, acting as radiosensitizers. Moreover, ultrasmall Ir enzyme-mimic nanocrystals (NCs) are decorated onto the surface of the nanoreactor, where NCs have catalyst-like activity and are sensitive to HO in the tumor microenvironment (TME) under near infrared-II (NIR-II) light stimulation. They efficiently catalyze the conversion of HO to O, thereby ameliorating hypoxia, inhibiting the expression of HIF-1α, and enhancing RT-induced DNA damage in cancerous tissue, further improving the efficiency of RT. Additionally, in response to high HO levels in TME, the Ir@WO nanoreactor also exerts peroxidase-like activity, boosting exogenous ROS, which increases oxidative damage and enhances ROS-dependent death signaling. Furthermore, Ir@WO can serve as a high-quality computed tomography contrast agent due to its high X-ray attenuation coefficient and generation of pronounced tumor-tissue contrast. This report highlights the potential of advanced health materials to enhance precision therapeutic modalities.

摘要

放疗(RT)通常单独或与其他疗法联合用于大多数恶性肿瘤。然而,肿瘤氧合程度、邻近健康组织损伤以及不准确的指导仍然是导致 RT 中断或失败的问题。在这里,开发了一种基于 Ir@WO 的多功能治疗平台,可同时解决上述精确放射增敏的关键问题。Ir@WO 纳米反应器具有强烈的 X 射线吸收能力,可用作放射增敏剂。此外,超小的 Ir 酶模拟纳米晶体(NCs)被修饰在纳米反应器的表面,NCs 在近红外-II(NIR-II)光刺激下具有类似催化剂的活性,并对肿瘤微环境(TME)中的 HO 敏感。它们有效地催化 HO 向 O 的转化,从而改善缺氧,抑制 HIF-1α 的表达,并增强癌症组织中 RT 诱导的 DNA 损伤,进一步提高 RT 的效率。此外,Ir@WO 纳米反应器还针对 TME 中的高 HO 水平发挥过氧化物酶样活性,促进外源性 ROS,增加氧化损伤并增强 ROS 依赖性死亡信号。此外,由于其高 X 射线衰减系数和产生明显的肿瘤组织对比度,Ir@WO 可用作高质量的计算机断层扫描造影剂。本报告强调了先进健康材料在增强精确治疗模式方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/e2cb1ca30c67/ADVS-11-2405192-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/0ba0e0264991/ADVS-11-2405192-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/e37512e6edea/ADVS-11-2405192-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/9dae246ba195/ADVS-11-2405192-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/bd57a86a470c/ADVS-11-2405192-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/e17917a02282/ADVS-11-2405192-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/97ea1514e484/ADVS-11-2405192-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/83291fb4cfb4/ADVS-11-2405192-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/005a98b5a25b/ADVS-11-2405192-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/e2cb1ca30c67/ADVS-11-2405192-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/0ba0e0264991/ADVS-11-2405192-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/e37512e6edea/ADVS-11-2405192-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/9dae246ba195/ADVS-11-2405192-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/bd57a86a470c/ADVS-11-2405192-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/e17917a02282/ADVS-11-2405192-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/97ea1514e484/ADVS-11-2405192-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/83291fb4cfb4/ADVS-11-2405192-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/005a98b5a25b/ADVS-11-2405192-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32d4/11481196/e2cb1ca30c67/ADVS-11-2405192-g006.jpg

相似文献

[1]
Computed Tomography Imaging Guided Microenvironment-Responsive Ir@WO Dual-Catalytic Nanoreactor for Selective Radiosensitization.

Adv Sci (Weinh). 2024-10

[2]
Nanozymes as Glucose Scavengers and Oxygenerators for Enhancing Tumor Radiotherapy.

ACS Appl Mater Interfaces. 2024-11-13

[3]
Doping Engineering To Modulate Surface Plasmon Resonance and Enzyme-like Activities for Enhancing Photoacoustic Imaging-Guided Targeted Cancer Therapy in the Second Near-Infrared Window.

ACS Appl Mater Interfaces. 2024-5-22

[4]
Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia.

Acta Biomater. 2021-11

[5]
Outer membrane vesicle-wrapped manganese nanoreactor for augmenting cancer metalloimmunotherapy through hypoxia attenuation and immune stimulation.

Acta Biomater. 2024-6

[6]
A Macrophage Membrane-Coated Cu-WO-Hydro820 Nanoreactor for Treatment and Photoacoustic/Fluorescence Dual-Mode Imaging of Inflamed Liver Tissue.

Anal Chem. 2024-4-23

[7]
A multifunctional cascade gas-nanoreactor with MnO as a gatekeeper to enhance starvation therapy and provoke antitumor immune response.

Acta Biomater. 2024-12

[8]
Boosting Peroxidase-Mimetic Activity of FeMn-NC Dual-Atom Radiosensitizing Nanozymes for Augmented Radiodynamic Immunotherapy.

ACS Nano. 2025-3-18

[9]
Remodeling the Tumor Microenvironment with Core-Shell Nanosensitizer Featuring Dual-Modal Imaging and Multimodal Therapy for Breast Cancer.

ACS Appl Mater Interfaces. 2023-1-18

[10]
Tumor-microenvironment-mediated second near-infrared light activation multifunctional cascade nanoenzyme for self-replenishing O/HO multimodal tumor therapy.

J Colloid Interface Sci. 2025-4

本文引用的文献

[1]
[Ru(dpp)]Cl-Embedded Oxygen Nano Polymeric Sensors: A Promising Tool for Monitoring Intracellular and Intratumoral Oxygen Gradients with High Quantum Yield and Long Lifetime.

Small. 2024-4

[2]
HIF-1α increases the osteogenic capacity of ADSCs by coupling angiogenesis and osteogenesis via the HIF-1α/VEGF/AKT/mTOR signaling pathway.

J Nanobiotechnology. 2023-8-7

[3]
Three Strategies in Engineering Nanomedicines for Tumor Microenvironment-Enabled Phototherapy.

Small. 2023-9

[4]
Ultrafast charge transfer in mixed-dimensional WO nanowire/WSe heterostructures for attomolar-level molecular sensing.

Nat Commun. 2023-5-11

[5]
X-Ray-triggered Carbon Monoxide and Manganese Dioxide Generation based on Scintillating Nanoparticles for Cascade Cancer Radiosensitization.

Angew Chem Int Ed Engl. 2023-6-5

[6]
The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.

Cancer Cell. 2023-3-13

[7]
Programmably Controllable Delivery of Metastable Ferrous Ions for Multiscale Dynamic Imaging Guided Photothermal Primed Chemodynamic Therapy.

Adv Mater. 2023-6

[8]
Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIF-1α.

J Extracell Vesicles. 2023-2

[9]
Tumor microenvironment enriches the stemness features: the architectural event of therapy resistance and metastasis.

Mol Cancer. 2022-12-22

[10]
Photothermal-based nanomaterials and photothermal-sensing: An overview.

Biosens Bioelectron. 2023-1-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索