Suppr超能文献

环境数据资源与 SEER 癌症患者数据库关联的景观分析。

Landscape analysis of environmental data sources for linkage with SEER cancer patients database.

机构信息

Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA.

Computational Sciences and Engineering Division, Oak Ridge National Laboratory, US Department of Energy, Oakridge, TN, USA.

出版信息

J Natl Cancer Inst Monogr. 2024 Aug 1;2024(65):132-144. doi: 10.1093/jncimonographs/lgae015.

Abstract

One of the challenges associated with understanding environmental impacts on cancer risk and outcomes is estimating potential exposures of individuals diagnosed with cancer to adverse environmental conditions over the life course. Historically, this has been partly due to the lack of reliable measures of cancer patients' potential environmental exposures before a cancer diagnosis. The emerging sources of cancer-related spatiotemporal environmental data and residential history information, coupled with novel technologies for data extraction and linkage, present an opportunity to integrate these data into the existing cancer surveillance data infrastructure, thereby facilitating more comprehensive assessment of cancer risk and outcomes. In this paper, we performed a landscape analysis of the available environmental data sources that could be linked to historical residential address information of cancer patients' records collected by the National Cancer Institute's Surveillance, Epidemiology, and End Results Program. The objective is to enable researchers to use these data to assess potential exposures at the time of cancer initiation through the time of diagnosis and even after diagnosis. The paper addresses the challenges associated with data collection and completeness at various spatial and temporal scales, as well as opportunities and directions for future research.

摘要

理解环境对癌症风险和结果的影响所面临的挑战之一,是估算在癌症患者的整个生命周期中,个体潜在暴露于不利环境条件的情况。从历史上看,这在一定程度上是由于缺乏可靠的癌症患者在癌症诊断前潜在环境暴露的衡量手段。癌症相关时空环境数据和居住史信息的新兴来源,加上用于数据提取和链接的新技术,为将这些数据整合到现有的癌症监测数据基础设施中提供了机会,从而更全面地评估癌症风险和结果。在本文中,我们对可与国家癌症研究所的监测、流行病学和结果计划收集的癌症患者记录的历史居住地址信息相关联的现有环境数据源进行了景观分析。目的是使研究人员能够使用这些数据来评估癌症发病时、诊断时甚至诊断后的潜在暴露情况。本文讨论了在不同时空尺度上数据收集和完整性方面的挑战,以及未来研究的机会和方向。

相似文献

引用本文的文献

本文引用的文献

9
Deep Ensemble Machine Learning Framework for the Estimation of Concentrations.深度集成机器学习框架用于估算浓度。
Environ Health Perspect. 2022 Mar;130(3):37004. doi: 10.1289/EHP9752. Epub 2022 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验