Suppr超能文献

使用经典深度神经网络进行纠缠检测。

Entanglement detection with classical deep neural networks.

作者信息

Ureña Julio, Sojo Antonio, Bermejo-Vega Juani, Manzano Daniel

机构信息

Instituto de Física Corpuscular (IFIC), CSIC and Universitat de València, Valencia, 46980, Spain.

Electromagnetism and Matter Physics Department, University of Granada, 18071, Granada, Spain.

出版信息

Sci Rep. 2024 Aug 5;14(1):18109. doi: 10.1038/s41598-024-68213-0.

Abstract

In this study, we introduce an autonomous method for addressing the detection and classification of quantum entanglement, a core element of quantum mechanics that has yet to be fully understood. We employ a multi-layer perceptron to effectively identify entanglement in both two- and three-qubit systems. Our technique yields impressive detection results, achieving nearly perfect accuracy for two-qubit systems and over accuracy for three-qubit systems. Additionally, our approach successfully categorizes three-qubit entangled states into distinct groups with a success rate of up to . These findings indicate the potential for our method to be applied to larger systems, paving the way for advancements in quantum information processing applications.

摘要

在本研究中,我们引入了一种自主方法来处理量子纠缠的检测和分类问题,量子纠缠是量子力学的一个核心元素,目前尚未得到充分理解。我们使用多层感知器来有效识别两比特和三比特系统中的纠缠。我们的技术产生了令人印象深刻的检测结果,在两比特系统中实现了近乎完美的准确率,在三比特系统中准确率超过了 。此外,我们的方法成功地将三比特纠缠态分为不同的组,成功率高达 。这些发现表明我们的方法有应用于更大系统的潜力,为量子信息处理应用的进步铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d59d/11300872/de9a68766033/41598_2024_68213_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验