Suppr超能文献

主动学习机学会了创建新的量子实验。

Active learning machine learns to create new quantum experiments.

机构信息

Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria;

Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria.

出版信息

Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1221-1226. doi: 10.1073/pnas.1714936115. Epub 2018 Jan 18.

Abstract

How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.

摘要

机器学习在量子实验室中有多有用?在这里,我们提出了智能机器在科学研究背景下的潜在用途问题。目前这项工作的主要动机是量子实验中各种纠缠类的未知可达性。我们通过使用面向物理的人工智能方法——投影模拟模型来研究这个问题。在我们的方法中,投影模拟系统面临的挑战是设计能够产生高维纠缠多光子态的复杂光子量子实验,这些状态在现代量子实验中非常有意义。人工智能系统学会了创建各种纠缠态,并提高了它们实现的效率。在这个过程中,系统自主地(重新)发现了实验技术,这些技术现在才成为现代量子光学实验的标准技术——这一特性并不是系统明确要求的,而是通过学习过程出现的。这些特性突出了机器在未来研究中可能具有更具创造性的角色的可能性。

相似文献

1
Active learning machine learns to create new quantum experiments.主动学习机学会了创建新的量子实验。
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1221-1226. doi: 10.1073/pnas.1714936115. Epub 2018 Jan 18.
2
Entanglement-based machine learning on a quantum computer.基于纠缠的量子计算机机器学习。
Phys Rev Lett. 2015 Mar 20;114(11):110504. doi: 10.1103/PhysRevLett.114.110504. Epub 2015 Mar 19.
3
Experimental realization of a quantum support vector machine.量子支持向量机的实验实现
Phys Rev Lett. 2015 Apr 10;114(14):140504. doi: 10.1103/PhysRevLett.114.140504. Epub 2015 Apr 8.
5
Automated Search for new Quantum Experiments.新型量子实验的自动搜索
Phys Rev Lett. 2016 Mar 4;116(9):090405. doi: 10.1103/PhysRevLett.116.090405.
6
Entangled Two-Photon Absorption Spectroscopy.纠缠双光子吸收光谱学。
Acc Chem Res. 2018 Sep 18;51(9):2207-2214. doi: 10.1021/acs.accounts.8b00173. Epub 2018 Sep 4.
7
Boltzmann machines and quantum many-body problems.玻尔兹曼机与量子多体问题。
J Phys Condens Matter. 2023 Nov 10;36(7). doi: 10.1088/1361-648X/ad0916.

引用本文的文献

1
Machine learning for estimation and control of quantum systems.用于量子系统估计与控制的机器学习。
Natl Sci Rev. 2025 Jul 7;12(8):nwaf269. doi: 10.1093/nsr/nwaf269. eCollection 2025 Aug.
6
Scientific discovery in the age of artificial intelligence.人工智能时代的科学发现。
Nature. 2023 Aug;620(7972):47-60. doi: 10.1038/s41586-023-06221-2. Epub 2023 Aug 2.
10
ChatGPT: five priorities for research.ChatGPT:研究的五个优先事项。
Nature. 2023 Feb;614(7947):224-226. doi: 10.1038/d41586-023-00288-7.

本文引用的文献

2
High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.高维单光子量子门:概念与实验
Phys Rev Lett. 2017 Nov 3;119(18):180510. doi: 10.1103/PhysRevLett.119.180510.
3
Projective simulation with generalization.具有泛化能力的投射模拟
Sci Rep. 2017 Oct 31;7(1):14430. doi: 10.1038/s41598-017-14740-y.
5
Entanglement by Path Identity.路径身份纠缠
Phys Rev Lett. 2017 Feb 24;118(8):080401. doi: 10.1103/PhysRevLett.118.080401. Epub 2017 Feb 23.
8
Automated Search for new Quantum Experiments.新型量子实验的自动搜索
Phys Rev Lett. 2016 Mar 4;116(9):090405. doi: 10.1103/PhysRevLett.116.090405.
9
Observation of Four-Photon Orbital Angular Momentum Entanglement.四光子轨道角动量纠缠的观测。
Phys Rev Lett. 2016 Feb 19;116(7):073601. doi: 10.1103/PhysRevLett.116.073601. Epub 2016 Feb 16.
10
Engineering two-photon high-dimensional states through quantum interference.通过量子干涉工程双光子高维态。
Sci Adv. 2016 Feb 26;2(2):e1501165. doi: 10.1126/sciadv.1501165. eCollection 2016 Feb.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验